

Report to: Markham Subcommittee

Meeting Date: June 26, 2024

SUBJECT:	Swan Lake- 2023 Water Quality Status and Updates
PREPARED BY:	Robert Muir, Environmental Services, Ext. 2357
	Zahra Parhizgari, Environnemental Services, Ext. 2867

RECOMMENDATION:

- 1. THAT the report entitled "Swan Lake- 2023 Water Quality Status and Updates" be received;
- 2. AND THAT Staff continue to implement the Long-term Management Plan for Swan Lake approved by Council in December 2021, including advancement of submerged aquatic vegetation, research into chloride treatment, and flow diversion evaluation (previously in Phases 2 and 3 of the Plan);
- 3. AND THAT Staff report back annually on water quality results and evaluation of adapted Core and Complementary measures for consideration in Phase 2 of the Plan through the Markham Sub-Committee with the participation of the Friends of Swan Lake Park;
- 4. AND THAT the next review of the Plan will be in 2025 (after the completion of Phase 1 and other measures as listed under item 2) with consideration for a workshop in 2026;
- 5. AND THAT Staff be authorized and directed to do all things necessary to give effect to this resolution.

PURPOSE:

The purpose of this report is to present:

- 2023 water quality results and implemented measures;
- Scope of work for 2024; and
- Report on the community meeting held on March 25, 2024

BACKGROUND:

On November 16, 2021, Staff provided a report and presentation to the Markham Subcommittee titled <u>Swan Lake Water Quality Management Plan</u>, outlining the history of Swan Lake management activities up to that point and a Long-Term Management Plan for Swan Lake Water Quality (the Plan) for the next 25 years. The Plan was developed based on a scientific evaluation of issues and opportunities for lake management and an assessment of several lake management measures designed with input from stakeholders (see here for <u>Meeting Minutes</u>).

The Swan Lake Long-Term Management Plan follows an adaptive management approach, through which management activities would be adjusted to maximize benefits and minimize

impacts. The Council endorsed this phased approach on December 14, 2021 (see here for <u>General Committee Meeting Minutes</u> and <u>Council Meeting Minutes</u>).

As per resolutions 7, 8, and 9 of the December 14, 2021 meeting, Staff have met the Friends of Swan Lake Park and the Markham Subcommittee annually to report on the water quality results and evaluation of the adapted measures (see here for Markham Subcommittee Report and Presentation in 2022 and 2023).

The following Discussion presents the 2023 water quality results and a description of the scope of work for the 2024 activities.

At the 2023 Sub-Committee meeting, the sub-committee requested that Staff hold a public meeting to communicate the Swan Lake water quality improvement program to City residents. This meeting was held on March 25, 2024, a summary of which is also provided in this report.

DISCUSSION:

2023 Water Quality Results and Implemented Measures

The Phase 1 Core Measures completed in 2023 include:

- Annual monitoring
- Enhanced geese management
- Fish management

Staff collected water quality data through the Swan Lake monitoring program from January to December 2023. These data provide insight into long-term trends in water quality and help determine the need for and impact of chemical treatment of Swan Lake (see Attachment A for the 2023 Annual Report).

Contractors completed geese management by chasing ("hazing") geese, oiling eggs, and managing nests. The hazing frequency was modified in 2021 to focus on the migration seasons. The increased hazing frequency (starting in mid-August) effectively reduced the number of geese present at different times of the day to about 50% of the geese numbers in 2020. As part of the enhance program, resident geese were relocated away from the Lake.

A fish inventory and removal campaign were completed to remove bottom-dwelling fish, which could interfere with the chemical treatment efficacy. Only three fish species were caught in the Lake through this intensive effort: Common Carp (non-native), Brown Bullhead, and Fathead Minnow.

The management activities in 2023 focused on the significant nutrient loadings identified in the Long-Term Plan (i.e., fish management to reduce internal loads from the lake bottom and geese management to reduce external loads).

In addition, some Phase 2 and 3 Complementary and Alternative Measures were brought forward in 2023, including:

- Planting of submerged aquatic vegetation
- Research into chloride removal technologies
- Feasibility of flow diversion

After reviewing the 2022 water quality results by the City's limnologist consultant, it was determined that the introduction of submerged aquatic vegetation (macrophytes) should be advanced to Phase 1 so that beneficial plant communities can compete with and help mitigate algae (phytoplankton) growth. Macrophytes will increase water clarity, which in turn, enhances their own growing conditions. The TRCA was hired in 2023 and planted wild celery in four fenced areas on the north side of the Lake.

Discussion with York University continued to enhance the methodology for a pilot project using biochar for the removal of chloride from water. York University is in the process of acquiring additional research funding and contract review in preparation for this project.

In 2023, a consultant was hired to conduct a technical analysis of stormwater flow diversion scenarios for the catchment area contributing to the Lake. The consultant has completed a background review and collected additional field data to adequately characterize the stormwater system in the catchment area and is currently developing a hydrologic and hydraulic model.

2024 Scope of Work

a. Phase 1 Core Measures

In 2024, the planned Phase 1 Core measures will continue, including water quality monitoring, geese management, and fish management. The scope of geese management was expanded in 2022 to further reduce the number of resident and migratory geese.

The Long-Term Plan includes provisions for a chemical treatment program every three to five years as the measure that will have the most immediate and tangible effect on water quality in the Lake. A chemical treatment using PAC was completed in 2021. The second chemical treatment is currently being planned for May-June of 2024.

b. Introducing Submerged Plants

Planting more submerged aquatic vegetation will continue in 2024 to increase water clarity. The 2024 chemical treatment will help improve clarity, providing an excellent opportunity for the plants to establish and propagate.

c. Chloride Removal using Biochar

Contract negotiation is underway with York University to develop biochar adsorption techniques to remove chloride from Swan Lake. In 2024, the researchers will characterize Swan Lake water and conduct lab-scale units to test the biochar's efficiency in this process.

d. Flow Diversion Study

The flow diversion study will be completed in 2024 and will provide information on any feasible scenario for flow diversion, and potential impacts and mitigation measures for any capacity-related impacts projected in the study area. The result of this analysis will be used to determine the potential benefits of each scenario on chloride concentration in the Lake.

This analysis will be of a technical nature and depending on the outcome and other considerations (e.g., system ownership), a Municipal Class Environmental Assessment-type study may be required to engage all stakeholders and identify a preferred alternative.

Community Meeting

During the May 11, 2023, Markham Subcommittee meeting, the sub-committee requested that a public information meeting be held to explain the Swan Lake Water Quality Improvement program to interested residents.

This meeting was held on March 25, 2024, at the Markham Museum to:

- Provide details of the water quality improvement program;
- Provide details of the park's improvement program;
- Share achievements of the program since it started;
- Inform the public about upcoming activities in 2024;
- Discuss ways to get involved in improving water quality and habitat health;
- Provided updates on the Shoreline Restoration project and its continuing role supporting water quality improvement as a first priority;
- Answer any questions the public may have.

The meeting witnessed an impressive turnout with over 120 community members in attendance. A Power Point presentation was delivered, effectively communicating the program details and its positive results. The active participation and expressed appreciation from the community for the work completed by Environmental Services and Operations Staff was truly heartening and appreciated. The presentation and display boards can be found in Attachment B.

FINANCIAL CONSIDERATIONS:

No financial impact.

HUMAN RESOURCES CONSIDERATIONS:

Not applicable.

ALIGNMENT WITH STRATEGIC PRIORITIES:

This report aligns with the areas of strategic focus as follows:

- Safe, Sustainable, & Complete Community: the proposed strategy will support the enhancement of the natural environment and built form through sustainable integrated planning, infrastructure management and services.
- Stewardship of Money & Resources: the strategy proposed will provide a reasonable cost-effective level of service.

BUSINESS UNITS CONSULTED AND AFFECTED:

Not applicable.

RECOMMENDED BY:

Eddy Wu, Director, Environmental Services Morgan Jones, Commissioner, Community Services

ATTACHMENTS:

Attachment A - 2023 Annual Water Quality Report

Attachment B- Community Meeting Presentation and Display Boards

Attachment A- 2023 Annual Water Quality Report

Attachment B- Community Meeting Presentation and Display Boards

Swan Lake

Annual Meeting with Markham Subcommittee

Environmental Services Authors: Robert Muir, Manager, Stormwater Zahra Parhizgari, Sr. Environmental Engineer, Stormwater

June 26, 2024

Building Markham's Future Together

Agenda

- Background
- Completed Work
- Ongoing Work

2

- Public Information Meeting
- 2024 Plan and Recommendations

Building Markham's Future Together

Background

Location and History

- Gravel pit in the 1960s and 1970s; construction waste dump in the early 1980s
- Lake formed when pumping for the gravel pit ceased operations
- Drainage area is fully developed, serviced by two stormwater management ponds and three oil and grit separators
- Closed system, prone to build-up of nutrients and algae growth
- Winter maintenance increases chloride concentration
- Water quality issues from 2010 and possibly earlier
- Active management of water quality since 2013 (Phoslock treatment, followed by geese management and monitoring)

Swan Lake Location Map

MARKHA

Building Markham's Future Together

Long Term Management Plan (2021)

2023 Council Resolutions

That the General Committee consider the following motion passed at the May 11, 2023, Markham Sub-Committee meeting:

- 1. That the report entitled "Swan Lake- 2022 Water Quality Status and Updates" be received; and,
- 2. That Staff continue to implement the Long-term Management Plan for Swan Lake approved by Council in December 2021, including advancement of submerged aquatic vegetation, research into chloride treatment, and flow diversion evaluation (previously in Phases 2 and 3 of the Plan); and,
- 3. That Staff report back annually on water quality results and evaluation of adapted Core and Complementary measures for consideration in Phase 2 of the Plan through the Markham Sub-Committee with the participation of the Friends of Swan Lake Park; and,
- 4. That the next review of the Plan will be in 2026 (after completion of Phase 1 and other measures as listed under item 2) and that a workshop of independent industry experts be considered after completion of Phase 1, and;
- 5. That the deputation from Fred Peters be received, and further;
- 6. That Staff be authorized and directed to do all things necessary to give effect to this resolution.

It was also recommended Staff hold a public meeting to communicate the Swan Lake water quality improvement program to City residents.

Building Markham's Future Together

Completed Work

Activity	Phase 1 Core Measures (Years 1-5)
Water quality monitoring and annual reporting to Subcommittee	\checkmark
Enhanced Geese management	\checkmark
Removal of benthic-dwelling fish	\checkmark
Maintenance of stormwater management facilities	\checkmark
Community Engagement	\checkmark
Shoreline planting / Improvements	\checkmark
Planting of submerged plants *	\checkmark
New technologies for chloride treatment *	☑Planning underway
Fish management plan and fish stocking	Pending improved water quality
Flow Diversion Feasibility Study **	Underway

* Originally planned for Phase 2

** Originally planned for Phase 3

Water Quality Monitoring

- Important for understanding issues and planning mitigation measures and adapting the plan based on the results
- Includes chemistry and biology
- Water level logger and staff gauge
- Measurements and samples by City staff
- Analysis by accredited laboratories
- Regular site inspections and observations
- External experts hired for review and updates

Building Markham's Future Together

Geese Management

- Geese relocation and hazing and egg/nest management
- Increased hazing frequency and geese relocation reduced the number of geese present at different times of the day
- No evidence of strobe lights being effective

Swan Lake Geese Count Survey QR Code

* Some assumptions have been made in calculating the daily average for each year to fill in data gaps.

Fish Management

- Removal of bottomdwelling fish (to avoid disturbance of sediment)
- Fish inventory (Common Carp, Brown Bullhead, and Fathead Minnow)
- Fish management plan and fish stocking pending improved water quality and planting of submerged aquatic vegetation

Storm System Maintenance

- Blocked outlet from Swan Club OGS was cleared
- Pond assumption discussions underway

Submerged Aquatic Vegetation Planting

- Planned for Phase 2 of the Long-Term Plan to help solidify the sediment and provide fish habitat.
- Moved to Phase 1 after a review of 2022 water quality results by our limnologist consultant
- Submerged aquatic vegetation (macrophytes) can compete with and help mitigate algae (phytoplankton) growth
- Macrophytes will increase water clarity, which in turn, enhances their own growing conditions.
- TRCA planted wild celery in five fenced locations on the north site

Oxygen

Water Quality- Nutrients and Oxygen

- Total Phosphorus:
 - Average under 30 µg/L during growing season
 - Decreased significantly after each treatment
- Total Nitrogen:
 - Average about 0.6 mg/L during growing season (limit 1.2)
 - Dominant forms not bioavailable
- Dissolved Oxygen:
 - Surface concentration > 8.5mg/L all year
 - Bottom concentration mostly > 8mg/L (except one reading)
 - · Increased compared to previous years
 - Continuous measurement at depth started; data need verification

13

Water Quality- Algae and Clarity

- Algal growth:
 - Cyanobacteria cell numbers significantly lower than 2022
 - Chlorophyll-a within the eutrophic state
 - Surface bloom not occurring since treatment
- Clarity:
 - Above >0.6 until July; Low clarity after July
 - Growing-season average within target

No surface bloom since treatment (photo from July 2023)

Algal bloom before treatment (photo from July 2020)

Winter Maintenance and Chloride Concentration

- Salt Usage:
 - Swan Lake Village Corporation
 - City roads
 - Residents north of the Lake
 - AMICA Corporation to the south
- Chloride Estimates: runoff sample collections and water balance
- Contribution higher during ~2018-2021 when the inlet to East pond was blocked but decrease significantly since 2021.
- Current chloride concentrations below Swan Lake targets

Initial estimate of chloride contribution to the Lake (tonne/yr) from each source based on modeled flows and salt usage data Values will be refined through the Flow Diversion Study.

Building Markham's Future Together

Ongoing Work

Assessment of New Technologies for Chloride Treatment

- Initially planned for 2027 at a cost of 50K
- Advanced to 2024
- Lab-scale units to test the biochar efficiency
- Refined scope of work with researchers
- Application for NSERC grant underway by York University

Flow Diversion Feasibility Study

- Alternative measure in Phase 3: evaluate/design structural modifications such as lake water recirculation and stormwater redirection
- FOSLP proposed to reduce Swan Lake's role in the 'local stormwater management regime' by rerouting the flows ... in order to control chloride concentrations.
- Flow Diversion Feasibility Study initiated:
 - Technical analysis to assess the feasibility of rerouting flows to determine if the infrastructure within Swan Lake can support the proposed changes.
 - Data collection/digitization of private sewer infrastructure completed.
 - Consultant was hired in 2023; model development underway.
 - Study to be completed by end of 2024.
- Further studies may be required to engage all stakeholders (including private landowners and York Region) and identify a preferred alternative.

Flow Diversion Feasibility Study - Scenarios

Source	Scenario
AMICA OGS and Swan Lake Blvd OGS	Redirect flows to 16 th Ave sewer
	Redirect flows to Lake Outlet
	Redirect the first-flush (most pollutant-laden – runoff) in a small diversion sewer
Swab Lake Club OGS	Redirect flow to North Pond Splitter
East Pond and North Pond	Adjust the flow splitter weir to reduce flow bypass to the Lake
	Expanding the storage capacity to reduce flow bypass to the Lake *
Foundation Drain Collectors	Redirecting flows toward Swan Lake to supply potentially cleaner, cool groundwater
Combination of the above scenarios	

* To consider if the redirecting scenarios increases flood risk and if less costly than any sewer capacity upgrades

Building Markham's Future Together

Flow Diversion Feasibility Study - Modelling

- Background review
- Field investigations (identify downspout connections to sewer, confirmation of sewer elevations, chloride sampling)
- Flow and rainfall monitoring
- Setting up a hydrology and hydraulic model

Public Information Meeting

Meeting Objective

- Provide details of the water quality improvement program
- Share achievements of the program since it started
- Inform the public about upcoming activities in 2024
- Discuss ways to get involved in improving water quality and habitat health
- Answer any questions the public may have
- Operations staff provided updates on the Shoreline Restoration project and its continuing role supporting water quality improvement as a priority

Meeting Outcome

- Meeting on March 25, 2024, at Markham Museum Transportation Hall
- Over 120 residents attended the meeting
- A Power Point presentation was delivered on program details and its positive results
- Active participation and expressed appreciation from the community

2024 Plan and Recommendations

2024 / 2025 Planned Activities

CORE MEASURES:

- Water quality monitoring and annual reporting to Subcommittee
- Geese and fish management
- Community engagement
- Chemical treatment in 2024
- Shoreline restoration (Operations)*
- Continue pond assumption process
- 5-year review in 2025

□ Research by Trent University on Rare Earth Elements

* In 2024, staff will submit 2025 capital budget request to construct permanent goose exclusion fencing and plantings to further support water quality improvements.

COMPLEMENTARY AND ALTERNATIVE MEASURES:

- Planting of Submerged Aquatic Vegetation
- Flow Diversion Feasibility Study
- Assessment of New Technologies for Chloride Treatment

1. THAT the report entitled "Swan Lake- 2023 Water Quality Status and Updates" be received;

2. AND THAT Staff continue to implement the Long-term Management Plan for Swan Lake approved by Council in December 2021, including advancement of submerged aquatic vegetation, research into chloride treatment, and flow diversion evaluation (previously in Phases 2 and 3 of the Plan);

3. AND THAT Staff report back annually on water quality results and evaluation of adapted Core and Complementary measures for consideration in Phase 2 of the Plan through the Markham Sub-Committee with the participation of the Friends of Swan Lake Park;

4. AND THAT the next review of the Plan will be in 2025 (after the completion of Phase 1 and other measures as listed under item 2) with consideration for a workshop in 2026;

5. AND THAT Staff be authorized and directed to do all things necessary to give effect to this resolution.

Building Markham's Future Together

Questions?

Annual Meeting with Markham Subcommittee

June 26, 2024

Swan Lake Water Quality Monitoring 2023 Annual Report

February 2024

Project Number: 23032

Swan Lake Monitoring Program 2023 Annual Report

Prepared By:

Zahra Parhizgari, M.Sc., P.Eng. PMP Environmental Engineer, Stormwater

Reviewed By:

Robert J. Muir, M.A.Sc., P.Eng. Manager, Stormwater Tammy Karst-Riddoch, Ph.D. Senior Aquatic Scientist, AECOM Canada

Executive Summary

Background

Swan Lake is situated in the City of Markham at the intersection of Sixteenth Avenue and Williamson Road. Swan Lake has an approximate area of 5.5 ha and a maximum water depth of 4.5 m (from the edge of the Lake at 210 MASL). A gravel pit in the 1960s and 1970s, Swan Lake is currently a community feature with multiple trails and urban development surrounding it.

Several issues were discovered with Swan Lake in 2010, including high phosphorus levels and significant algal blooms during the summer months, which led to low oxygen levels and degraded fish habitats. A Phoslock treatment was administered in 2013 to reduce the phosphorus levels and algal blooms in Swan Lake.

In 2019, the City of Markham conducted a study to define a Water Quality Management Strategy for Swan Lake. The Strategy, finalized in July 2020, recommended a chemical treatment in 2021.

In August 2021, 13 tonnes of Poly Aluminum Chloride (PAC) were applied to the Lake in a controlled manner over several days.

The Swan Lake Long-Term Management Plan was received by the Markham Sub Committee in November 2021 and approved by the Council in December 2021. It describes a phased adaptive approach, including provisions for chemical treatment every three years. Activities planned for 2022 included enhanced geese management, fish removal, water quality monitoring, and investigation of additional measures to improve water quality in the Lake.

Water quality monitoring of Swan Lake has been conducted almost annually since the first treatment in 2013 to track water quality and the continued effectiveness of the treatment. The collected data presented in this report is part of the ongoing monitoring program that will allow for continuous assessment of the water quality in Swan Lake and will be used to implement and adapt the Long-Term Management Plan for Swan Lake.

Since 2022, sampling for chloride measurement has also been conducted at several locations to determine the relative contribution of each source to the Lake.

In 2023, a DO logger was installed at the Dock to record the diurnal oxygen cycle in the Lake.

This report discusses observations at the monitored stations in the Lake throughout 2023.

Results- Lake Water Quality

Water quality is regularly monitored at two shoreline sites: the Dock and the Bridge, on a bi-weekly basis (from April to November). Samples and measurements are taken at 0.5 m or 1m increments for the depth of the lake. A level logger is used to record the water level in the Lake.

The following paragraphs provide the monitoring results for the 2023 monitoring period, as well as annual summaries of available data from 2011 to 2023. The figures include plots of measured dissolved oxygen (DO), water clarity, phosphorus concentration, chloride concentration, and geese count.

Targets

Phosphorus concentration and clarity were compared to the eutrophication thresholds and/or the interim targets developed for Swan Lake through the 2019 Water Quality Management Strategy. For DO and chloride, Federal and/or Provincial water quality Guidelines or Objectives are shown for perspective. It

should be noted that Swan Lake is not a natural waterbody, and there is no requirement for it to comply with these guidelines and objectives. Where technically and economically feasible, the City will aim to meet these guidelines and objectives to protect and enhance the aquatic environment.

Dissolved Oxygen (DO), Temperature, and pH

The minimum dissolved oxygen concentration required for the protection of warm water fish is 5 mg/L for water temperatures up to 20 °C, and 4 mg/L for temperatures above 20 °C. DO concentrations for the 1m from the surface and 1m from the bottom layers are shown below.

Measured day-time surface concentrations were above the DO guideline throughout 2023 (above 8.5 mg/L). DO concentration at the bottom layer was also above the guideline.

Lower DO concentrations could have lethal or sub-lethal (physiological and behavioral) effects on fish; however, some fish can acclimate to lower oxygen levels and survive concentrations between 1 and 3 mg/L.

Measured day-time DO levels did not indicate anoxia during the sampling events, but its decline at the bottom of the water column could suggest that if the stratification persisted, it could have led to anoxic episodes (at night when respiration occurs), contributing to the release of nutrients from the sediments. Such potential occurrence would, however, be less severe than pre-treatment conditions as implied from the annual trend of day-time surface and bottom concentrations.

Continuous measurement of DO from August to November indicated that DO concentrations have a diurnal pattern. However, the exact extent could not be determined due to frequent fouling of the logger. Further measurements and verification of data with alternative monitoring devices will be conducted to quantify night-time DO more accurately.

Figure ES-2: 2023 Monitoring Results and 2011-2023 Annual Results- Dissolved Oxygen

Note 1: DO concentrations are shown at 1 m from the surface (average of 0.5 and 1 m) and 1 m from the bottom (average of two bottom depths). Note 2: Historical data are shown for the average growing period (June-Sep) unless otherwise indicated.

The pH measured at the lab ranged from 8.4 to 9.3 throughout the year. High pH is consistent with high levels of algae. Algae take up carbon dioxide, a weak acid, from the water for photosynthesis, causing the water to become more basic (higher pH).

Water Transparency (Secchi Depth)

Secchi depth represents water transparency, which declines when the algae level increases. In the trophic state classification scheme, growing period average water clarity of under 1 m is the threshold for a hyper-eutrophic condition. The proposed interim target for Swan Lake is 0.6-0.8 m based on correlation with the phosphorus target. In 2023, water clarity met or exceeded the target from April to the end of June. Water clarity declined to below 0.4 m in August before it increased in November to 1 m.

Phosphorus and Nitrogen Concentrations

Phosphorus concentration is the most important indicator of the trophic state in Swan Lake. It is an indication of how prone the Lake is to algae growth.

Phosphorus concentrations above 100 μ g/L represent a hyper-eutrophic condition, which lead to high algae concentrations. In 2023, total phosphorus concentration in the top 0.5 and 1.5 m depths averaged under 20 μ g/L during the growing season (under the 30 μ g/L threshold for eutrophic condition, and well below the interim target of 50-100 μ g/L). There was significant improvement in phosphorus concentrations after treatment by Phoslock and PAC.

Figure ES-1: 2023 Monitoring Results and 2011-2023 Annual Results- Total Phosphorus

Note 1: The 2023 values are averages of samples collected at 0.5 and 1.5 m from the surface. Note 2: Annual concentrations are summaries of the growing period (June-Sep) unless otherwise indicated.

In 2023, total nitrogen concentrations over the growing season averaged about 0.60 mg/L (below the 1.2 mg/L threshold for a hyper-eutrophic condition). In 2022, ammonia and nitrate concentrations (the forms available for uptake by biota) were generally very low (except in April and November), and nitrogen was mainly present as organic matter.

Chloride Concentration

Chloride concentration has been increasing in urban lakes as a result of de-icer application for winter maintenance of roads and walkways. Chloride does not biodegrade, readily precipitate, volatilize, or bioaccumulate. It does not adsorb readily onto mineral surfaces and therefore when introduced, concentrations remain high in surface water.

Chloride guidelines developed for generic environmental data include a long-term guideline (120 mg/L) and a short-term guideline (640 mg/L). The long-term guideline has been developed to protect all

organisms (present in Canadian aquatic systems) against negative effects during chronic indefinite exposure. The short-term guideline aims to protect most species against lethality during a sudden hike in chloride concentration for an acute short period (24-96 hrs). These guidelines may be over-protective for areas with an elevated concentration of chloride and associated adapted ecological community. For such circumstances, it has been suggested that site-specific (higher) targets be derived considering local conditions such as water chemistry, background concentrations, and aquatic community structure. The interim target for chloride is 400-500 mg/L consistent with 2013-2014 values.

In 2023, chloride levels were below the target and declined considerably compared to 2022, continuing previous declines since 2020. This is likely due to dilution by cleaner water.

Figure ES-4: 2023 Monitoring Results and 2011-2023 Annual Results- Chloride

In 2023, water samples were collected from various inlets to the Lake and analyzed for chloride. These data will be used to update the chloride mass balance following the completion of the Flow Diversion Feasibility Study currently underway.

Dissolved Organic Carbon and Color

Dissolved organic carbon (DOC) and colour indicate the organic content of lake water. In 2023, DOC ranged between 7 and 9 mg/L, with color change from 7 to 18 TCU at both stations. DOC in 2022 and 2023 was considerably higher than in previous years, even before treatment. The increase may potentially be associated with the remnants of Phragmites in the Lake, as the roots were not removed.

Geese Count

Geese are the primary external source of nutrients in the Lake. Therefore, active geese management is completed annually. The geese control program started in 2014, focusing on resident geese. The program extended to the management of migratory geese in 2016.

The 2023 program included a hazing program in the Spring, with an expanded version starting in mid-August to mid-December, nest management and geese relocation, and the installation of nine strobe lights on the Lake and adjacent stormwater ponds.

In 2023, the increased hazing efforts were very effective in reducing the number of migratory geese visiting the Lake, similar to those achieved in 2021 and 2022 when the extended program was implemented. Fewer geese were counted in August and September of 2023 compared to previous years, likely due to the prolonged warm weather conditions and delayed migration.

The strobe lights did not have any noticeable impact on the counts. The geese count data helped provide more certainty in the results, and were used to more effectively schedule hazing efforts.

Figure ES-6: 2023 Monitoring Results and 2011-2023 Annual Results- Geese Count

Note 1: 2023 data are the sum of counts in each month, compensated for days with no count.

Note 2: Annual trends are shown as daily averages of counts over June-August and September to November, representing resident and migratory geese, respectively.

Algal Growth

In 2023, limited surface scums were observed along the shoreline around the Dock, as well as in the northern bay at the Bridge site. While the Lake was dominated by phytoplankton from late June, surface scums were not widespread.

Samples were collected and sent to the laboratory for cyanobacteria analysis. Test results showed higher diversity and significantly lower total counts compared to 2022.

Seven samples were analyzed for cyanobacteria between April and September. The total cyanobacteria cell count was below or close to Health Canada's indicator value for the potential production of cyanotoxins of 50,000 cells/mL, except in July (three and five times higher at the Dock and the Bridge, respectively). The average chlorophyll-a for the three samples collected in June and August from the Dock station was about 22 μ g/L, within the eutrophic state.

Several algal blooms with potentially toxic cyanobacteria were observed in years before 2011; however, testing completed before 2011 and following treatment (2013-2016) did not detect any Microcystin in the water. In 2016, a bloom was tested and resulted in a Microcystin concentration of 73 μ g/L. Extended blooms were observed at several sites in 2018; however, cell density was at half of WHO's threshold for significantly increased human health risk due to toxins. These results suggest that in most years, toxin-producing cyanobacteria are not the dominant form of phytoplankton in Swan Lake.

Swan Lake Monitoring Program 2023 Annual Report

In recent years, Abraxis tests have resulted in Microcystin levels below the recreational limit (20 μ g/L, recently updated to 10 μ g/L).

Summary and Recommendations

Overall, the management activities in recent years that focused on the significant nutrient loadings identified in the water quality improvement study (i.e., chemical treatment and fish management to reduce internal loads and geese management to reduce external loads), were effective at improving water quality in the Lake as shown in reduced phosphorus concentrations and improved dissolved oxygen levels. These improvements represent a positive step towards improving the aquatic habitat in the Lake and meeting the long-term water quality goals.

In 2023, chloride levels decreased considerably compared to 2021 and 2022, likely due to clearing the blockage at the East Pond inlet, which resulted in lower catchment flows from the inlet bypass to the Lake. Dilution by cleaner water could have contributed to lower chloride concentrations in the Lake.

While internal and external source controls successfully reduced nutrient concentrations, the Lake was dominated by phytoplankton, and water clarity did not improve. This could be partly due to the absence of submerged aquatic vegetation (SAV), which has been replaced by phytoplankton (algae) due to low water clarity. To ameliorate this condition, in June 2023, an SAV planting initiative was implemented in four fenced areas along the north shore of the Lake as a pilot project.

The 2024 monitoring program will follow the recommendation of the Long-Term Management Plan. The second round of chemical treatment will be implemented in 2024, and additional planting of SAVs and studies and research on strategies to reduce chloride concentration in the Lake will be initiated.

Table of Contents

1.	Introduction	1
2.	Monitoring Program	3
	2.1 Annual Water Quality Monitoring	3
	2.1.1 Locations	3
	2.1.2 Duration and Frequency	3
	2.1.3 Parameters and Methodology	3
	2.1.4 Targets and Thresholds	4
	2.2 Runoff Monitoring	5
	2.3 Water Level Monitoring	5
3.	Results	6
	3.1 2023 Water Quality	6
	3.1.1 Dissolved Oxygen and Temperature	6
	3.1.2 Water Transparency	9
	3.1.3 Nutrients Concentrations	9
	3.1.4 pH11	11
	3.1.5 Chloride in Lake and Runoff.	. 11
	3.1.7 Algae Growth	13
	3.2 2023 Water Level	.15
	3.3 Water Quality Trends	.15
4.	Geese Management	19
	4.1 Geese Management Approach	.19
	4.2 Geese Count	.19
	4.3 Results	.19
	4.4 Historical Trends	.20
5.	Other Management Activities	21
	5.1 Fish Inventory and Removal	.21
	5.2 Shoreline Restoration	.21
	5.3 Submerged Aquatic Vegetation Planting	.22
6.	Summary and Conclusions	23
	6.1 Summary of Monitoring Results	.23
	6.2 Management Activities	.23
	6.3 Conclusions	.24

Appendices

Appendix A : Swan Lake Water Quality Inspection Forms Appendix B : Certificates of Analysis

Tables

Table 1: Eutrophic State Classification	4
Table 2: Measured DO and Temperature	7
Table 3: 2023 Secchi Depth Results (m)	9
Table 4: Chloride Concentrations in Runoff	12
Table 5: Chlorophyll Measurement (µg/L) in 2023	13
Table 6: Records of Algae Blooms and Toxicity	18
Table 7: Fish Species Collected from Swan Lake	21

Figures

Figure 1: Swan Lake and Runoff Monitoring Stations	2
Figure 2: Temperature (orange) and DO (blue) Profile at the Dock Station	8
Figure 3: 2023 Measured Nutrients Concentrations - Dock Site	10
Figure 4: 2023 Measured Nutrients Concentrations - Bridge Site	10
Figure 5: Chloride Concentrations in Swan Lake in 2023	11
Figure 6: Measured DOC and Color in 2023	12
Figure 7: Planktonic Cyanobacteria Population in Swan Lake in 2021	14
Figure 8: Planktonic Cyanobacteria Population in Swan Lake in 2022	14
Figure 9: Planktonic Cyanobacteria Population in Swan Lake in 2023	14
Figure 10: Lake Elevation Records and Precipitation in 2023	15
Figure 11: Historical Water Quality Results (Growing-Season Averages)	17
Figure 12: 2023 Geese Count Results	20
Figure 13: Historical Geese Counts	20
Figure 14: Trophic State Classification for Swan Lake based on Phosphorus Concentration	25

1. Introduction

Swan Lake is situated in the City of Markham at the intersection of Sixteenth Avenue and Williamson Road, as shown below in Figure 1. Swan Lake has an approximate area of 5.5 ha and a maximum water depth of 4.5 m (from the deepest point to the Lake edges at 210m). Formerly a gravel pit in the 1960s and 1970s, Swan Lake is currently a community feature with multiple trails and urban development.

Several issues were discovered with Swan Lake in 2010, including high phosphorus levels and significant algal blooms during the summer months, which led to low oxygen levels and degraded fish habitats. A Phoslock treatment was administered in 2013 to reduce the phosphorus levels and algal blooms in Swan Lake.

In 2019, the City of Markham conducted a study to define a Water Quality Management Strategy for Swan Lake. The Strategy, which was finalized in July 2020, recommended chemical treatment starting in 2021.

In August 2021, 13 tonnes of Poly Aluminum Chloride (PAC) were applied to the Lake in a controlled manner over several days.

The Swan Lake Long-Term Management Plan was received by Markham Sub Committee in November 2021 and approved by the Council in December 2021. It describes a phased adaptive approach, including provisions for chemical treatment every three years. Activities planned and completed for 2023 included enhanced geese management, fish removal, and water quality monitoring, as well as investigation of additional measures to improve water quality in the Lake.

Water quality monitoring of Swan Lake has been conducted annually since treatment in 2013 in order to track water quality and the effectiveness of management activities. The 2023 monitoring results presented in this report are part of the ongoing monitoring program that will allow for continuous assessment of the water quality in Swan Lake and help establish a long-term plan for the treatment of Swan Lake.

In 2023, sampling for chloride measurement was also conducted at several locations to determine the relative contribution of each source to the Lake.

Figure 1: Swan Lake and Runoff Monitoring Stations

2. Monitoring Program

2.1 Annual Water Quality Monitoring

2.1.1 Locations

Water quality was monitored at two shoreline sites, the Dock, and the Bridge, as shown in Figure 1. On average, the water depth at the Dock is approximately 2.5 meters, which allows it to represent Swan Lake as a whole. The water depth at the bridge is about 0.5 meters, and it is used to represent the conditions of the shallow bays around Swan Lake. Field testing and sampling for laboratory analysis were completed at both sites to ensure the water conditions at Swan Lake were properly represented.

During the bi-weekly monitoring, samples and measurements were taken at 0.5 m or 1 m increments for the depth of the Lake. The dock site was the deeper of the two sites, allowing for sampling and monitoring from 0.5 - 2.5 m, whereas the bridge site was shallow and sampling was typically only achievable under the surface, slightly above the bottom of the Lake to avoid sediment contamination.

When the water level dropped to around 2 m, samples were not collected from the 2.5 m depth at the Dock station.

2.1.2 Duration and Frequency

In 2023, water quality was monitored bi-weekly from April to November.

A total of 14 sampling events were completed.

2.1.3 Parameters and Methodology

Vertical water quality profiling, water transparency readings (Secchi depth), and photographic documentation were performed during each site visit.

Field testing was done utilizing an YSI ProODO meter to determine the temperature and dissolved oxygen (DO) at each sampling interval over the vertical profile of the lake. To ensure accurate readings, the meter and probe were stored in a proper carrying bag and regularly calibrated as instructed in the handheld quick-start guide.

A HOBOware U26 oxygen logger was mounted at the Dock on May 29, 2023, and recorded the DO and temperature of the water every 15 minutes throughout the day. Before the first use, the logger was calibrated for DO at 100% saturation and 0% saturation (using a sodium sulfite solution). An anti-fouling guard was also installed on the sensor cover to protect against fouling. The sensor was placed 1m above the lake bed at the same location as the level logger.

Water transparency was measured as part of the field testing at both the dock and bridge monitoring sites. Transparency was measured using a Secchi disk by lowering it into the water while rotating the handle until the black and white pattern of the Secchi disk was no longer visible. The water depth read from the Secchi disk was then recorded as the transparency (i.e., water clarity).

Water samples for laboratory testing were taken using a horizontal water sampler at different depths. Parameters analyzed at various stations and times included:

- Nutrients including total and ortho phosphorus, ammonia, nitrate, nitrite, Total Kjeldahl Nitrogen (TKN)
- Chloride, color, Dissolved Organic Carbon (DOC), pH
- Phytoplankton (taxonomic identification and counts of cyanobacteria)

Swan Lake Monitoring Program ARKHAM 2023 Annual Report

Observations of Swan Lake were noted, and photographs were taken during each monitoring/inspection site visit. Photographs provide a way to record the condition of vegetation and algae around Swan Lake. Completed inspection forms and photos can be found in Appendix A.

2.1.4 **Targets and Thresholds**

Generic thresholds for eutrophic and hyper-eutrophic conditions in the lakes are provided in Table 1.

Table 1: Eutrophic State Classification

Parameter	Eutrophic Condition	Hyper-eutrophic Condition
Secchi Depth (m)	1-2.1	<1
Total Phosphorus (µg/L)	31-100	100
Total Nitrogen (mg/L)	0.65-1.20	>1.20
Chlorophyll a (µg/L)	9.1 - 25	> 25

The 2019 Water Quality Management Strategy proposed a set of interim targets for Swan Lake to be used as triggers for management actions if the triggers are tripped in two consecutive years. Numerical values were defined for total phosphorus (100 μ g/L) and Secchi depth (0.6-0.8 m, as updated in 2021 based on correlation with the phosphorus target).

For DO and chloride, Federal and/or Provincial water quality Guidelines¹ or Objectives² were considered for perspective. It should be noted that Swan Lake is not a natural waterbody, and there is no requirement for it to comply with these limits. Where technically and economically feasible, the City will aim to meet these limits to protect and enhance the aquatic environment.

The minimum dissolved oxygen concentration required for the protection of warm water fish is 5 mg/L for water temperatures up to 20 °C, and 4 mg/L for temperatures above 20 °C. Lower concentrations could have lethal or sub-lethal (physiological and behavioral) effects on fish. However, some fish can acclimate to lower oxygen levels and survive concentrations between 1 and 3 mg/L.

Chloride guidelines developed based on generic environmental data include a long-term guideline (120 mg/L) and a short-term guideline (640 mg/L). The long-term guideline has been developed to protect all organisms (present in Canadian aquatic systems) against negative effects during indefinite exposure. The short-term guideline will protect most species against lethality during a sudden hike in chloride concentration for a short period (24-96 hrs). These guidelines may be over-protective for areas with an elevated concentration of chloride and associated adapted ecological community. For such circumstances, it has been suggested that site-specific (higher) targets be derived considering local conditions such as water chemistry, background concentrations, and aquatic community structure. The interim target for chloride is 400-500 mg/L consistent with 2013-2014 values.

For Cyanotoxins, the Health Canada guideline for recreational activities was updated from 20 μ g/L to $10 \,\mu g/L$ in 2022³. The 2022 guidelines also provide indicator values for the potential production of cyanotoxins including:

- Total cyanobacteria cells: 50,000 cells/mL
- Total cyanobacterial biovolume: 4.5 mm³/L

¹ Canadian Council of Ministers of the Environment (CCME) Water Quality Guidelines for the Protection of Aquatic Life (http://ceqgrcqe.ccme.ca/en/index.html)

² Ontario Provincial Water Quality Objectives (PWQO) (https://www.ontario.ca/page/water-management-policies-guidelinesprovincial-water-quality-objectives#section-13) ³ Health Canada, 2022. Guidelines for Canadian Recreational Water Quality, Cyanobacteria and their Toxins, Ottawa, Ontario.

• Total chlorophyll a: 33 µg/L

2.2 Runoff Monitoring

In the Swan Lake catchment, salt application for winter maintenance is mainly completed by the City's Road department and the Swan Lake Village Corporation.

Winter maintenance of 1 km of the catchment roads and sidewalks is completed by the City of Markham. The City prescribes and tracks the quantity of salt distributed to the City roadways based on current and future forecast models and temperatures to determine the required action and material usage in compliance with the desired level of service and O.Reg. 239/02 requirements.

The remaining roads and parking areas, as well as private walkways and driveways, are serviced privately. As per the Village Amenities Committee (VAC), the Village Corporation employs "a qualified, reputable cleaning and maintenance service employing Smart About Salt principles to plow/shovel and their insurance recommends the de-icing methods of rock salt, applied as necessary to maintain their insurance and mitigate potential claim".

Chloride in salting materials is readily dissolved in water and transported overland by runoff or infiltrated into soils, contaminating groundwater and surface water. A fraction of chloride in applied road salt is retained by soil and is not observed in surface runoff. As a result, salt loading to surface water occurs primarily in winter and spring during melt conditions but continues through the summer and fall via the discharge of impacted groundwater, dry deposition of dust to the lake surface, non-point source runoff washing dry salt from land surfaces. Salt accumulated in the ponds could also be discharged into the Lake through the flushing of stormwater ponds.

In 2023, water samples were collected from various inlets to the Lake to quantify and determine the relative contribution of each source to chloride concentration in Swan Lake. Samples were collected from both ponds' inlets, as well as outfalls from the ponds and OGS's to the Lake. Samples were also collected from the shoreline runoff and Swan Lake Blvd.

The outfalls were not flowing during some sampling events, in which case, samples were collected from the pool of water present. There was no flow/ visible water at the outfall from the Swan Club's OGS, and therefore, no sample was collected at this location. As a result, the City requested that the Swan Club clear out the blockage from this OGS to restore its treatment capacity. The OGS and its outlet were cleaned in late July 2023.

Conductivity was also measured in a number of samples, as this parameter can be used as a surrogate for chloride. Samples were collected during four snowmelt events from January to March 2022.

2.3 Water Level Monitoring

The water level was monitored using HOBOware U20 Water logger mounted at the Dock. The data logger records the pressure and temperature of the water every 15 minutes. The measured pressure is compensated using a baro-logger to calculate water depth. Missing data were calculated using the methodology developed in 2022.

3. Results

3.1 2023 Water Quality

The following sections discuss water quality results in 2023.

3.1.1 Dissolved Oxygen and Temperature

Table 2 provides the measured DO profile over the 2023 monitoring period. At the Dock station, all measured day-time surface concentrations were above 8.5 mg/L throughout 2023. At 1.5- 2 m depth, the DO was also above 8 mg/L, except on one occasion, but never under 2 mg/L, which would be indicative of anoxic conditions. All measurements at the Bridge indicated a DO concentration of above 7.5 mg/L.

Table 2 also provides measured temperature profiles in 2023, indicating warm water throughout the depth in the summer months.

Profiles of temperature and dissolved oxygen (see Figure 2) indicate that Swan Lake was transiently stratified in June and July (when temperature decline is greater than 1 °C per m of depth). Transient stratification can cause reduced mixing/aeration and lead to anoxia with the release of nutrients from the sediments.

In 2023, in addition to using the YSI ProODO meter for bi-weekly measurements of temperature and dissolved oxygen (DO) over the vertical profile, a continuous logger was also used to measure the diurnal changes in DO. DO increases during daylight hours when photosynthesis occurs and decreases at night when respiration continues but photosynthesis does not.

Continuous measurement of DO from August to November indicated that DO concentrations have a diurnal pattern. However, the exact extent could not be determined due to frequent fouling of the logger. Frequent visits were done to the Lake to clean the sensor, as fouling occurred regularly, resulting in some inaccurate or no readings. A second U26 logger was rented and used for a week to test the accuracy of the City's logger. Further measurements and data verification with alternative monitoring devices will be conducted to quantify night-time DO more accurately in 2024.

	DO		Temper	rature (°	C)					
	Bridge		Dock			Bridge	Dock			
	Depth (m)		Dept	h (m)		Depth (m)	Depth (m)			
Date	0.5	0.5	1	1.5	2	0.5	0.5	1	1.5	2
1/4/2023	13.7	13.2	13.0	12.7	-	0.6	1.5	1.6	1.6	-
4/12/2023	9.6	10.4	10.4	10.4	10.7	13.0	12.8	12.3	12.1	11.9
4/26/2023	9.1	10.4	10.4	10.2	10.1	10.7	11.9	11.4	11.1	11.1
5/10/2023	11.6	13.4	13.4	13.2	12.6	-	15.4	15.2	14.8	14.4
5/24/2023	10.1	12.8	12.8	12.7	12.4	17.6	18.2	18.1	18.1	18.0
6/7/2023	11.4	10.9	10.8	10.7	10.1	19.4	20.7	20.7	20.7	20.6
6/21/2023	10.9	11.3	10.6	10.3	-	24.5	23.2	22.8	21.8	-
7/12/2023	11.2	9.8	9.7	9.3	-	23.3	24.2	24.1	24.0	-
7/24/2023	11.0	10.7	10.1	9.5	-	23.7	25.1	24.4	24.1	-
8/2/2023	8.7	11.6	11.1	10.1	-	21.1	23.3	23.2	23.0	-
8/16/2023	7.8	11.2	11.3	11.1	3.0	22.1	23.1	23.0	23.0	22.5
8/30/2023	8.5	10.3	10.3	9.7	9.2	21.1	21.4	21.4	21.4	21.3
9/12/2023	9.1	11.0	10.9	8.4	-	22.4	22.5	22.3	22.0	21.8
9/27/2023	8.5	9.1	9.0	8.8	8.6	17.6	18.6	18.4	18.3	18.2
10/18/2023	7.5	8.6	8.5	8.4	7.9	11.6	12.0	12.0	11.9	11.9
11/22/2023	11.2	11.9	12.1	12.2	12.1	4.0	4.2	3.8	3.6	3.6

Table 2: Measured DO and Temperature

WARKHAMSwan Lake Monitoring Program
2023 Annual Report

3.1.2 Water Transparency

A robust measure of algal biomass is the measurement of the Secchi disk depth or transparency.

Table 3 summarizes the results of the water transparency readings. Transparency at the Dock station was above 0.6 m until mid July but dropped to below 0.6 m until late November. The proposed interim target for Swan Lake is 0.6-0.8 m. Water transparency at the Bridge site was generally equal to the water depth.

Date	Dock	Bridge
12-Apr	1.15	0.58
26-Apr	1	0.6
10-May	1	0.5
24-May	1	0.5
7-Jun	0.65	0.4
21-Jun	0.9	0.3
12-Jul	0.62	0.4
24-Jul	0.54	0.4
2-Aug	0.35	0.3
16-Aug	0.33	0.35
30-Aug	0.43	0.4
12-Sep	0.5	0.35
27-Sep	0.4	0.33
18-Nov	0.53	0.37
22-Nov	1	0.3

Table 3: 2023 Secchi Depth Results (m)

3.1.3 Nutrients Concentrations

Samples collected during each visit were tested for Total Phosphorus (TP), Orthophosphate, Total Kjeldahl Nitrogen (TKN), Nitrate, Nitrite, and Ammonia. The results can be found in Figure 3 for the Dock site and Figure 4 for the Bridge site. The Certificates of Analysis from Bureau Veritas Laboratories are in Appendix B. Nutrient concentrations are shown for the depths sampled.

Total phosphorus concentration at 0.5 and 1.5 m depths averaged under 20 μ g/L during the growing season and throughout the year (below the 30 μ g/L threshold for a eutrophic condition).

The summer peak in total phosphorus (September 27) occurred during a dry period. There was a concurrent increase in orthophosphate (but not ammonia) that may suggest that there was a pulse of nutrient release from the sediments due to anoxia. Other potential mechanisms include wind-driven suspension of nutrient-rich sediments, increased rates of decomposition of organic matter, or germination of resting cells in the sediments.

Total nitrogen concentrations over the growing season averaged about 0.60 mg/L (below the 1.2 mg/L threshold for a hyper-eutrophic condition). Total concentrations at the Bridge site averaged 0.62 mg/L. Ammonia and nitrate are the directly-bioavailable forms, with Ammonia being the most usable form for algae. In 2023, Ammonia and Nitrate concentrations were generally close to or below Method Detection Limit (MDL), and nitrogen was mainly present as organic compounds (i.e., TKN less Ammonia) with the exception of spring samples. Bioavailable nutrient pulses (orthophosphate and ammonia) in late summer and fall are consistent with the release of these nutrients due to episodic anoxia and decomposition of organics, including algae.

Elevated nitrate and ammonia in early spring are common in eutrophic waterbodies due to colder water temperatures and lack of uptake by plants and algae. Spring increase in total phosphorus as nitrate and ammonia/TKN (and transparency) decline suggests increasing spring algal activity, peaking in late June.

Figure 3: 2023 Measured Nutrients Concentrations - Dock Site

Figure 4: 2023 Measured Nutrients Concentrations - Bridge Site

3.1.4 pH

pH measured at the lab ranged from 7.9 to 9.5 throughout the year, with higher values measured between June and August, reflecting high algae production.

3.1.5 Chloride in Lake and Runoff

Surface samples collected during each visit were also analyzed for Chloride, as summarized in Figure 5.

Water quality testing results indicated that the samples contained between 170 and 400 mg/L of Chloride.

In 2023, chloride levels decreased considerably compared to 2021 and 2022, likely due to clearing the blockage at the East Pond inlet, which resulted in lower catchment flows from the inlet bypass to the Lake.

Chloride guidelines developed based on generic environmental data include a long-term guideline (120 mg/L) and a short-term guideline (640 mg/L). The interim target for chloride is 400-500 mg/L consistent with 2013-2014 values. In 2023, all samples met these targets.

In 2023, water samples were collected from various inlets to the Lake and analyzed for chloride.

These data, along with scattered data from previous years, are shown in Table 4. Based on this limited dataset, chloride concentration in the spring runoff from the pond catchments is about 1000 mg/L (median of pond inlet measurements, except for January 13th). This concentration would not usually end up in the Lake, except through the East Pond bypass when the pond inlet was blocked. At other times, the bypass would carry 'cleaner' water (after the first flush), with concentrations around 200 mg/L. Flows from the ponds to the Lake have an average concentration of 350 mg/L (average of pond and outlet concentrations).

The runoff collected from the Swan Lake Blvd. OGS contained an average of about 2000 mg/L of chloride, while from the AMICA OGS had a concentration of about 450 mg/L. Samples were also collected from the shoreline runoff, which resulted in very low chloride concentrations (about 25 mg/L). The OGS at Swan Club did not have any flow through the outfall due to a blockage. The OGS and its outlet to the Lake were cleared in July 2023.

These data will be used to update the chloride mass balance following the completion of the Flow Diversion Feasibility Study, which is currently underway.

Table 4: Chloride Co	oncentrations in Runoff
----------------------	-------------------------

	Inflow to	Ponds	Bypass from Pond to Lake	Infl	ow to Lal	ke from Pond	ls	Inflows t from (o Lake DGS
				East		North		Swan	
	East	North		Pond- in	From	Pond- in		Lake	
Date	Pond	Pond	East Pond	pond	south	pond	Road	Blvd.	AMICA
3/20/2012 *	577	673		572		56			
3/26/2021	957	98.5		343		199			
4/11/2021		79	131		673				
1/13/2022	13200**							3160	
2/15/2022	2340	2120					326	836	360
3/6/2022	380	410		410		180		1200	610
3/16/2022	3700	3100						4800	470
3/24/2022	1200	1100	150					1900	240
4/6/2022	2800		350						1100
1/18/2023	2000	1200	240						120
2/8/2023	3900	650							450
2/9/2023	360	340			960		120	420	300
3/24/2023	1300	630							
								1550/	405/
Median/average	1029/	1360	180/210		335	/384		2053	456

* Data were used cautiously since the exact location of samples and sampling conditions are not known.

** Standing water, not used in calculations.

3.1.6 DOC Concentrations and Color

Surface samples collected during each visit were also analyzed for Dissolved Organic Carbon (DOC), and Color. The results are summarized in Figure 6. Increased DOC and colour may be associated with high decomposition rates releasing DOC, e.g., from the remnants of Phragmites removed from shoreline.

Figure 6: Measured DOC and Color in 2023

3.1.7 Algae Growth

In 2021, samples were collected before and after chemical treatment and sent to the laboratory for phytoplankton and cyanobacteria identification. Test results are summarized in Figure 7 below, and show a significant reduction in concentrations following the treatment, potentially due to the particle scavenging characteristics of the treatment chemicals. Phytoplankton density increased almost five weeks post-treatment to values comparable to pre-treatment levels.

In 2022, limited algae scum was observed in early June, and while the Lake was dominated by phytoplankton for the remainder of the monitoring period, surface scums were not widespread. Four sets of samples were collected from the Lake between August and December for phytoplankton identification, as shown in Figure 8. These results should be considered with caution due to lab errors in the identification of Microcystis. In general, the 2022 results showed lower diversity and higher total counts compared to 2021.

Abraxis tests were performed on June 29, July 14, and August 11, 2022 and resulted in Microcystin levels below the recreational limit (recently updated to 10 μ g/L). Nonetheless, the presence of known toxin producers at high cell densities suggests that cyanotoxins can potentially occur at elevated concentrations that exceed recreational guidelines. Toxin concentrations can vary tremendously over small spatial and temporal scales, and it is, therefore, possible that higher concentrations occurred elsewhere in the Lake or at different times.

In 2023, seven samples were analyzed for cyanobacteria identification. The results are shown in Figure 9 and indicate significantly lower cell counts compared to 2022. Cell counts in August and September decreased from about 2,000,000 cells/mL in 2022 to 50,000 cells/mL in 2023. The dominant genera of Microcystis (Chroococcales order) and Cylindrospermopsis (Nostocales order) stayed as such in both 2022 and 2023, with several genera of the Synechococcales order also growing in high percentages in 2023.

Besides the actual identification and counting of cells, the extraction and analysis of chlorophyll-a (chl-a), which is the green algal pigment used in photosynthesis, is also a measure of algae biomass. Concentrations of chl-a and its magnesium-free derivative, pheophytin-a (pheo-a), were measured in three samples from the Dock and the Bridge in 2023. The average of chla for the three samples collected in June and August from the Dock station was about $22 \mu g/L$, within the eutrophic state.

Date	Parameter	Dock	Bridge	
6/7/2023	Chlorophyll a	11	-	
	Chlorophyll c	-	-	
	Pheophytin a	1.2	-	
6/21/2023	Chlorophyll a	3.3	-	
	Chlorophyll c	-	-	
	Pheophytin a	4	-	
8/16/2023	Chlorophyll a	53	74	
	Chlorophyll c	5.4	3.3	
	Pheophytin a	12	14	

Table 5: Chlorophyll Measurement (µg/L) in 2023

Figure 7: Planktonic Cyanobacteria Population in Swan Lake in 2021

Other genera present at less than 3% include: Planktothrix and Coelosphaerium

Other genera present at less than 3% include: Aphanothece, Gomphosphaeria, Phormidium, Planktothrix and Limnothrix

Other genera present at less than 3% include: Gloeocapsa, Anabaena , Oscillatoria and Merismopedia

Other genera present at less than 3% include: Anabaena, Oscillatoria, Coelosphaerium and Merismopedia

Other genera present at less than 3% include: Gloeocapsa, Gomphosphaeria, Anabaena, Aphanizomenon, Woronichinia Chroococcus, Glaucospira, Leptolyngbya, Snowella Other genera present at less than 3% include: Gloeocapsa, Gomphosphaeria, Pseudanabaena Chroococcus, Glaucospira, Microchaete, Snowella

3.2 2023 Water Level

In 2023, the calculated water level changed from a max of 208.35 m in May to a low of 208m in November. Total precipitation in 2023 was 733 mm, as recorded at the Markham Museum station.

The maximum water level recorded or estimated between 2017 and 2023 ranged from 208.25 m to 208.48, when total precipitation ranged from 670 to 934 mm.

In addition to 2022 and 2023 being relatively dry years, the clearing of the blockage at the East Pond inlet resulted in lower flows from the inlet bypass to the Lake relative to recent years, further lowering the water level in Swan Lake. Extended dry periods in June 2023 coincide with the approximate time of stratification.

Calculated water level and daily precipitation data from the nearby rain gauge are shown in Figure 10.

Figure 10: Lake Elevation Records and Precipitation in 2023

3.3 Water Quality Trends

Water quality monitoring of Swan Lake has been conducted annually since treatment in 2013 to track water quality and the effectiveness of implemented mitigation measures.

The following paragraphs and Figure 11 provide a summary of water quality trends for the period of monitoring.

Dissolved Oxygen (DO)

Historical records of DO and temperature profile show that Swan Lake thermally stratifies during the summer despite its shallow depth. Anoxic conditions were observed at depths below 2 m, to as high as 1 to 1.5 m (in 2016). The majority of surface concentrations have been above 5 mg/L since 2014. In 2023, day-time surface concentrations at the Dock station were above 10 mg/L. DO concentration at the bottom layer was also above the guideline, except for one measurement at 3 mg/L. DO concentrations, however, have a diurnal pattern, often decreasing at night. The extent of the nighttime decline will be determined with further monitoring.

Water Clarity (Secchi Depth)

In Swan Lake, Secchi depth has typically been quite low throughout the summer, but it increases in November, reflecting the end of the growing period for phytoplankton. The average annual values

shown in Figure 11 are all below 1 m, except in 2014 and 2021, following chemical treatment. In 2023, water clarity was above 0.6 m until the mid July but dropped to below 0.6 m for the remainder of the monitoring period until late November.

Total Phosphorus (TP)

Average growing period (May - September) TP concentrations indicated hyper-eutrophic conditions in all monitored years except for the post-treatment years, 2013 and 2014, as well as 2021 to 2023. There was no monitoring in 2015.

Nitrogen Compounds

Total nitrogen concentration over the growing period has been above the 1.2 mg/L threshold for a hyper-eutrophic condition, except in the post-treatment year, 2014, and in 2021 to 2023. Nitrogen is, however, not believed to be the limiting nutrient for eutrophication in Swan Lake (i.e., the nutrient that elicits the largest response in algae growth).

Inorganic nitrogen compounds (NO₂, NO₃, and NH₃) have often been below detection limits, indicating relatively low levels of bioavailable nitrogen concentrations. In 2023, ammonia and nitrate concentrations were generally very low (except in April), and nitrogen was mainly present as organic matter.

Chloride

Chloride concentrations were increasing in Swan Lake over the past few years with a slight drop in 2021. Removing the blockage at the East Pond inlet resulted in lower flows from the inlet bypass to the Lake, lowering chloride concentration in Swan Lake in 2022 and 2023.

The Long-Term Management Plan for the Lake suggests that the main mechanism for lowering chloride levels would be source control. Emerging technologies (chloride removal using biochar) and the feasibility of flow redirection are being studied in 2024.

Figure 11: Historical Water Quality Results (Growing-Season Averages)

Algae Blooms and Cyanobacteria

Table 6 provides a summary of the observed algae blooms in the Lake over the years. It also shows any tests conducted to measure toxins (mainly in terms of Microcystin concentration) in the Lake water.

Year/Period	Algae Blooms Observation	Toxicity Test Result
Before 2011	Several blooms of cyanobacteria were observed	Microcystin concentration under detection limit
2013-2016	No apparent cyanobacteria proliferation and blooms; no resident concern related to the Lake's water quality	Microcystin concentration under detection limit
2016	A bloom was detected at one location	Microcystin concentration of 73 μ g/L in one sample tested (recreational guideline is 20 μ g/L)
2017	No bloom was observed	-
2018	Extended blooms were observed at several sites	Not tested for toxicity; cell density was at half of WHO's threshold for significantly increased risk for human health
2019	Extended blooms were observed at several sites	Microcystin toxicity was measured with test strips; all samples were below 10 µg/L
2020	Blooms were observed at several sites	Microcystin toxicity was measured with test strips; all samples were below 10 µg/L
2021	Blooms were observed at several sites before treatment; the high biomass was inhibited by the August PAC treatment; however, by October, cyanobacteria were as high as in previous summers and falls.	Not tested for toxicity
2022	Surface scum were not widespread; Lab results showed lower diversity and higher total counts compared to 2021.	Microcystin toxicity was measured with test strips; all samples were below 10 μ g/L
2023	Surface scum were not widespread; Lab results showed higher diversity and significantly lower total counts compared to 2022.	Not tested for toxicity

While internal and external source controls in 2023 successfully reduced nutrient concentrations to below the specified targets, in 2023, the Lake was dominated by phytoplankton, and water clarity improvements were modest. This could be partly due to the absence of submerged aquatic vegetation (SAV), which has been replaced by phytoplankton (algae) due to historically high concentrations of total phosphorus. SAV compete with algae for nutrients and light, and the establishment of SAV growth may help to reduce phytoplankton blooms over the growing season.

SAV would prevent sediment resuspension, take up nutrients, and act as habitat for zooplankton, which in sufficient densities would help control algal blooms. The return of SAV could be key to shifting the lake to a clear state and, this shift seems unlikely without active bio-manipulation to break the cycle of high turbidity- phytoplankton dominance – high turbidity⁴. Therefore, in 2023, the TRCA was contracted to implement a SAV planting pilot project in four fenced areas along the north shore of the Lake. Further planting may be considered following the 2024 chemical treatment.

⁴ Scheffer, M. Alternative Attractors of Shallow Lakes. The Scientific World (2001) 1, 254-263.

4. Geese Management

4.1 Geese Management Approach

Geese reduction at Swan Lake is necessary due to the nutrient load they contribute to the Lake.

In 2023, the geese management program was completed by two external contractors.

Border Control Bird Dogs, an external consultant, was hired to chase (i.e., 'haze') terrestrial geese by border collies (including the Toogood Pond, where they also performed egg oiling). Program activity frequency was modified in 2021 to focus on the migration seasons. The frequent geese chasing would encourage the geese to relocate to a quieter place and reduce the number of resident geese at Swan Lake.

The Toronto Region Conservation Authority (TRCA) was hired to relocate resident geese from Swan Lake (and Mount Joy Park) and to remove the nests and eggs from the area.

The strobe lights purchased in 2020 at the request of Friends of Swan Lake Park were also installed on the Lake and the two adjacent stormwater management ponds. Strobe lights work by using a solar-powered LED light that flashes every two seconds and is intended to disrupt the geese's sleep patterns and discourage them from staying on the Lake.

4.2 Geese Count

In 2023, the geese count was completed by the consultant, City staff, and volunteers from the community.

Border Control Bird Dogs recorded the number of geese observed during each visit. Staff counted the number of geese every two weeks, coinciding with the water quality sampling site visits.

Staff also developed a geese count App using ArcGIS Survey123, which a number of residents used to record geese count and note other wildlife observations.

4.3 Results

Figure 12 illustrates the number of geese counted at Swan Lake throughout the 2023 monitoring period.

In this figure, a significant increase in geese numbers is evident when they migrate south; however, the increased hazing frequency (starting on August 15) effectively reduced the number of geese present at different times of the day. Fewer geese were counted in August and September of 2023 compared to previous years, likely due to the prolonged warm weather conditions and delayed migration.

Following the enhanced hazing, daily numbers dropped to below 300 and remained much lower than in previous years. Any impact that strobe lights might have had on the geese count is not readily evident from the data. Limited data are available for June and July when hazing was not occurring.

In addition, seven nests and 38 eggs were managed at Swan Lake in April.

In total, 40 Canada Geese were rounded up from Swan Lake and Mount Joy Park on June 14 and 21, 2023.

Figure 12: 2023 Geese Count Results

4.4 Historical Trends

Active geese management has been completed annually since 2014. The geese management program focused on resident geese at the beginning and extended to the management of migratory geese in 2016.

Daily Averages of counts are shown for each year in Figure 13. Data are summarized for June to August and September to November, representing resident and migratory geese, respectively. Despite a general increase in geese population in Southern Ontario, the numbers at Swan Lake have been controlled over the past years.

Figure 13: Historical Geese Counts

5. Other Management Activities

5.1 Fish Inventory and Removal

The Long-Term Management Plan for Swan Lake (2021) has a provision for managing bottom-dwelling fish to reduce sediment disturbance.

Similar to 2021 and 2022, the City hired the TRCA in 2023 to complete a fish inventory and removal operation.

In 2021, three fish species were captured across five different sampling events. The three species were Brown Bullhead (*Ameiurus nebulosus*), which were relocated to Milne Dam, Common Carp (*Cyprinus carpio*), which were euthanatized, and Fathead Minnow (*Pimephales promelas*), which were returned to the Lake.

The same three fish species as in 2021 were captured during one electrofishing sampling event and one netting sampling event on August 23 and 24, 2022. In 2022, the TRCA was informed by the Ontario Ministry of Natural Resources and Forestry (OMNRF) that a Fish Stocking license would not be granted due to the possibility of disease transfer. Instead, OMNRF requested that both Common Carp and Brown Bullhead be euthanized.

An electrofishing day on August 21, 2023, resulted in the capture of the same three fish species, with the addition of the non-native goldfish.

A summary of the results for both years is shown in Table 7. The timing of the sampling (April vs. August) likely influenced the catch because water temperatures are warmer in August, and fish are less active in cold water. The use of nets could explain some variations in counts, e.g., fewer fathead minnows in 2023 when nets were not used.

Date	Fish Species	Number of Fish
April 2021	Brown Bullhead	210
(3 days electrofishing + 2 days nets)	Common Carp	7
	Fathead Minnow	>10,000
August 2022 (1 day electrofishing, 1 day nets)	Brown Bullhead	80
	Common Carp	20
	Fathead Minnow	875
August 2023	Brown Bullhead	84
(1 day electrofishing)	Common Carp	103
	Fathead Minnow	14
	Goldfish	2

Table 7: Fish Species Collected from Swan Lake

5.2 Shoreline Restoration

As part of the Parks Refresh program for Swan Lake, herbicides were used on the Phragmites/common reeds in Swan Lake and the two stormwater management ponds, followed by physical removal by an amphibious vehicle in 2022. The herbicide application, which was carried out by licensed contractors working on behalf of the TRCA, was repeated in the spring of 2023.

5.3 Submerged Aquatic Vegetation Planting

Phase 2 of the Long-Term Plan included provisions for introducing native submerged plants in Swan Lake to help solidify the sediment and provide fish habitat.

After a review of 2022 water quality results by the City's limnologist consultant, it was determined that the introduction of submerged aquatic plants (macrophytes) should be advanced to Phase 1 of the plan so that beneficial plant communities can compete with and help mitigate algae (phytoplankton) growth. Macrophytes will increase water clarity, which, in turn, enhances their own growing conditions. Aquatic plantings will complement existing management activities.

The planting of SAVs was implemented in June 2023 in four fenced areas along the north shore of the Lake as a pilot project.

6. Summary and Conclusions

6.1 Summary of Monitoring Results

Through the Swan Lake monitoring program, data were collected in 2023. The collected data provide insight into long-term trends in water quality and will also help determine the need for and impact of management activities on Swan Lake.

Dissolved oxygen, temperature, and water transparency were measured at two stations through bi-weekly site visits. Profiles of temperature and dissolved oxygen indicated that Swan Lake was thermally stratified in June and July. The minimum dissolved oxygen concentration required for the protection of warm water fish is 5 mg/L, which was met in the surface water and the bottom layer, except on one occasion based on day time measurements. DO concentration have a diurnal pattern and the extent will be determined with further monitoring.

pH measured at the lab ranged from 7.9 to 9.5, with higher values measured between June and August, indicative of high algae concentration.

Transparency at the Dock station was above 0.6 m until the end of July but dropped to below 0.6 m for the remainder of the monitoring period until late November. The proposed interim target for Swan Lake is 0.6-0.8 m based on correlation with the phosphorus target.

Water samples were analyzed for nutrients (phosphorus and nitrogen compounds). Total phosphorus concentration in the 0.5 and 1.5m depth averaged under 20 μ g/L during the growing season (June-July) and throughout the year (below the 30 μ g/L threshold for eutrophic conditions).

Total nitrogen concentrations over the growing season averaged about 0.6 mg/L (below the 1.2 mg/L threshold for a hyper-eutrophic condition).

Chloride concentrations in the Lake were within the target range specified for the Lake (between 170 and 400 mg/L), and were considerably lower than 2021 values, continuing the prior declining trend.

Chloride concentrations were also measured in stormwater runoff to the ponds and the Lake (from ponds, OGS's, and overland flow) during snow melt and spring freshet. The data will be used to update the chloride balance and determine the relative contribution of each source to chloride concentration in Swan Lake.

In 2023, limited surface scum was found at both the Dock and Bridge sampling sites; however, the Lake was dominated by phytoplankton. Samples analyzed for cyanobacteria indicated lower total counts than 2022.

The water level at the logger location changed from a maximum of 208.35 m in May to 208 in November.

6.2 Management Activities

In 2023, geese management was completed by chasing (i.e., 'hazing') terrestrial geese by border collies and egg oiling, as well as nest management and geese relocation in the spring. Program frequency was modified in 2021 to focus on the migration seasons. Nine strobe lights were also maintained on the Lake and the two stormwater management ponds. The increased hazing frequency (starting on August 15) effectively reduced the number of geese present at different times of the day to about 40% of numbers in 2020, and lower than those in 2022. Any impact that strobe lights might have had on the geese count is not readily evident.

Fish management and the removal of bottom-dwelling fish was completed by the TRCA, and 80 Brown Bullhead and 1000 Common Carp were captured and euthanized. A limited number of Fathead Minnow were captured and released to the Lake.

As part of the shoreline restoration program, a second application herbicides were used on the Phragmites/common reeds in Swan Lake and the two stormwater management ponds.

A pilot project was implemented to plant Submerged Aquatic Vegetation in four fenced areas along the north shore of the Lake to improve water clarity.

6.3 Conclusions

Based on the measured nutrient concentrations in 2023, Swan Lake is classified as mesotrophic for total phosphorus (as well as nitrogen, but not for transparency; see Table 1 for definitions).

Figure 14 provides a summary of phosphorus concentrations for all the years with available data.

Overall, the management activities in 2021-2023 that focused on the significant nutrient loadings identified in the water quality management plan (i.e., chemical treatment and fish management to reduce internal loads and geese management to reduce external loads), were effective at improving water quality in the Lake as shown by reduced phosphorus concentrations and improved dissolved oxygen levels, and lower densities of cyanobacteria. These improvements represent a positive step towards improving the aquatic habitat in the lake and meeting the long-term water quality goals.

In 2022 and 2023, chloride levels decreased considerably compared to 2021, likely due to clearing the blockage at the East Pond inlet, which resulted in lower catchment flows from the inlet bypass to the Lake.

While internal and external source controls successfully reduced nutrient concentrations, the Lake was dominated by phytoplankton, and water clarity did not improve. This could be partly due to the absence of submerged aquatic vegetation (SAV), which has been replaced by phytoplankton (algae) due to low water clarity. The planting of SAVs stated in June 2023 as a pilot project to help improve water clarity.

The 2024 monitoring program will follow the recommendation of the Long-Term Management Report. Continuous dissolved oxygen monitoring will continue to evaluate potential anoxic episodes at night and better determine periods of transient stratification and bottom anoxia as they relate to internal nutrient loads.

Additional measures that will be implemented in 2024 include a chemical treatment, further planting of SAV, evaluation of cost and feasibility of treatment options to reduce chloride concentration, and research into using biochar for chloride removal.

Figure 14: Trophic State Classification for Swan Lake based on Phosphorus Concentration

Appendix A : Swan Lake Water Quality Inspection Forms

Swan Lake Water Quality Monitoring

Date: January 18, 2023 Inspectors ZP, RM	Date:	January 18, 2023	Inspectors	ZP, RM	
--	-------	------------------	------------	--------	--

Station: Dock

Time:	10:25						
Secchi Readin	Disk g (m)	Staff Gauge Reading (cm)	39				
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)				
0.5 m							
1 m							
1.5 m							
2 m							
2.5 m							

Time:			
Secchi Disk Reading (m)			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth			

Dock	
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	
Geese and wildlife notes	

North Pond

Swan Lake Blvd OGS	No Sample	
AMICA OGS	No Sample	
Swan Club OGS		

Lake Outlet	Low Flow Sample	
East Pond Inlet	Low Flow Sample	
East Pond Bypass	Low Flow Sample	
North Pond Inlet	Low Flow Sample	

North Pond Bypass	No Sample	
Runoff Notes		

Date: February 8, 2023	Inspectors	ZP, SS
------------------------	------------	--------

Time:	10:11		
Secchi Readin	Disk g (m)	Staff Gauge Reading (cm)	
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m			
1 m			
1.5 m			
2 m			
2.5 m			

Time:	10:52		
Secchi Disk Reading (m)			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth			

Dock	
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	
Geese and wildlife notes	

North Pond

Swan Lake Blvd OGS	No Sample	
AMICA OGS	Low Flow Sample	
Swan Club OGS	No Sample	
Lake Outlet	No Sample	
East Pond Inlet	Low Flow Sample	
East Pond Bypass	No Sample	
North Pond Inlet	No Sample	

North Pond Bypass	Low Flow Sample	
Runoff Notes		

Date: February 9, 2023	Inspectors	Zp	
------------------------	------------	----	--

Time:	10:55		
Secchi Readin	Disk g (m)	Staff Gauge Reading (cm)	
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m			
1 m			
1.5 m			
2 m			
2.5 m			

Time:			
Secchi Disk Reading (m)			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth			

Dock	
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	
Geese and wildlife notes	

North Pond

Swan Lake Blvd OGS	High Flow Sample	
AMICA OGS	High Flow Sample	
Swan Club OGS		
Lake Outlet		
East Pond Inlet		
East Pond Bypass	High Flow Sample	
North Pond Inlet		

North Pond Bypass	
Runoff Notes	

Date: March 24, 2023 Inspectors ZP, SS	
--	--

Time:	09:44		
Secchi Reading	Disk g (m)	Staff Gauge Reading (cm)	
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m			
1 m			
1.5 m			
2 m			
2.5 m			

Time:			
Secchi Disk Reading (m)			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth			

Dock	2
Open Water/ West	2
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	
Geese and wildlife notes	4 geese on rooftop

Mostly frozen

North Pond

Mostly frozen

Swan Lake Blvd OGS	No Sample	
AMICA OGS	No Sample	
Swan Club OGS	No Sample	
Lake Outlet	High Flow Sample	
East Pond Inlet	Low Flow Sample	
East Pond Bypass	Low Flow Sample	

North Pond Inlet	
North Pond Bypass	Low Flow Sample
Runoff Notes	Samples from standing water at ponds

Date: April 12, 2023	Inspectors	ZP, SS
----------------------	------------	--------

Time:	10:22			
Secchi Disk 1.15 Reading (m)		1.15	Staff Gauge Reading (cm)	48
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	10.36		97.8	12.8
1 m	10.35		96.8	12.3
1.5 m	10.38		96.5	12.1
2 m	10.65		98.6	11.9
2.5 m	.5 m			

Time:			
Secchi Disk Reading (m)	5.8		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	9.55	90.7	13

Dock	2
Open Water/ West	3
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	1
Geese and wildlife notes	

Inlet open. dowm trees

North Pond

Water half way inlet

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: April 26, 2023 Inspectors	ZP, TN	
---------------------------------	--------	--

Time:	10:07			
Secchi Disk 1 Reading (m)		1	Staff Gauge Reading (cm)	50
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	10.4		96.4	11.9
1 m	10.35		94.5	11.4
1.5 m	10.17		92.4	11.1
2 m	10.11		91.9	11.1
2.5 m	2.5 m			

Time:	11:10			
Secchi Disk Reading (m)	0.6			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)	
0.5 m or max depth	9.11	82	10.7	

Dock	
Open Water/ West	
Southeast Island	5
Open Water/ East	
Bridge	
Northern Island	2
Geese and wildlife notes	6 swans

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: May 10, 2023 Inspectors ZP, DJ	
--------------------------------------	--

Time:	10:42			
Secchi Disk Reading (m)		1	Staff Gauge Reading (cm)	48
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	13.38		133.8	15.4
1 m	13.44		133.9	15.2
1.5 m	13.23		130.7	14.8
2 m	12.56		122.9	14.4
2.5 m				

Time:	11:53			
Secchi Disk Reading (m)	0.5			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)	
0.5 m or max depth	11.61	116.3		

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	0
Bridge	
Northern Island	
Geese and wildlife notes	

Inlet clear

North Pond

High water

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	

North Pond Inlet	
North Pond Bypass	
Runoff Notes	
Date: May 24, 2023 Inspectors ZP, DJ	
--------------------------------------	--
--------------------------------------	--

Time:	11:17			
Secchi Readin	Disk g (m)	1	Staff Gauge Reading (cm)	
Depth	Dissol	ved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m	n 12.75		135.3	18.2
1 m	m 12.8		135.4	18.1
1.5 m	12.71		134.5	18.1
2 m	12.4		131.4	18
2.5 m				

Time:	12:18		
Secchi Disk Reading (m)	0.5		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	10.13	106.9	17.6

Dock	13
Open Water/ West	
Southeast Island	
Open Water/ East	3
Bridge	
Northern Island	
Geese and wildlife notes	3 adults and 10 geeslings, no fencing

inlet flowing

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	

North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: June 7, 2023 Inspectors ZP, DJ	
--------------------------------------	--

Time:	10:27			
Secchi Reading	Disk g (m)	0.65	Staff Gauge Reading (cm)	32
Depth Dissolved oxygen (mg/L)		ved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m	m 10.92		121.7	20.7
1 m	m 10.8		120.3	20.7
1.5 m	m 10.72		119.5	20.7
2 m	10.12		112.5	20.6
2.5 m				

Time:	10:56		
Secchi Disk Reading (m)	0.4		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	11.43	124.4	19.4

Dock	
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	10
Northern Island	
Geese and wildlife notes	

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: June 21, 2023 Inspectors	ZP, DJ
--------------------------------	--------

Time:	10:54			
Secchi Disk 0.9 Reading (m)		0.9	Staff Gauge Reading (cm)	38
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	11.33		132.8	23.2
1 m	10.61		123.2	22.8
1.5 m	10.34		117.5	21.8
2 m				
2.5 m				

Time:	11:41			
Secchi Disk Reading (m)	0.3			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)	
0.5 m or max depth	10.88	130.5	24.5	

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	0
Bridge	
Northern Island	
Geese and wildlife notes	

Low water. Inlet clear

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: July 12, 2023	Inspectors	ZP, AW
---------------------	------------	--------

Time:	11:07			
Secchi Disk 0.62 Reading (m)		0.62	Staff Gauge Reading (cm)	36
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	9.79		116.7	24.2
1 m	9.74		115.9	24.1
1.5 m	9.33		110.8	24
2 m				
2.5 m				

Time:	12:03			
Secchi Disk Reading (m)	0.4			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)	
0.5 m or max depth	11.15	130.7	23.3	

Dock	
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	
Geese and wildlife notes	

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date:July 24, 2023InspectorsZ.P. & D.J.	
---	--

Time:	10:49			
Secchi Disk 0.54 Reading (m)		0.54	Staff Gauge Reading (cm)	39.5
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	10.72		129.9	25.1
1 m	10.121		121.1	24.4
1.5 m	9.45		112.5	24.1
2 m				
2.5 m				

Time:	11:57			
Secchi Disk Reading (m)	0.4			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)	
0.5 m or max depth	11	130	23.7	

Dock	6
Open Water/ West	
Southeast Island	
Open Water/ East	

Bridge	
Northern Island	
Geese and wildlife notes	

Inlet is clear of debris. There is algae present.

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	

North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: August 2, 2023	Inspectors	ZP, AW	
----------------------	------------	--------	--

Time:	10:53			
Secchi Readin	Disk g (m)	0.35	Staff Gauge Reading (cm)	40
Depth	Dissol	ved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m	11.6		132.1	23.3
1 m	11.08		129.7	23.2
1.5 m	10.12		118	23
2 m				
2.5 m				

Time:	11:38		
Secchi Disk Reading (m)	0.3		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	8.74	98.3	21.1

Dock	0
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	
Northern Island	

Geese and wildlife	1 Blue Heron, 2 green heron, mallards at Dock
notes	

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	

East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: August 16, 2023	Inspectors	ZP & DJ	
-----------------------	------------	---------	--

Time:	09:53			
Secchi Readin	Disk g (m)	0.33	Staff Gauge Reading (cm)	36
Depth	Dissol	ved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m	11.23		131.2	23.1
1 m	11.31		131.9	23
1.5 m	11.1		129.4	23
2 m	3		34	22.5
2.5 m				

Time:	10:49		
Secchi Disk Reading (m)			
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	7.79	89.3	22.1

Dock	0
Open Water/ West	
Southeast Island	
Open Water/ East	
Bridge	0
Northern Island	
Geese and wildlife notes	

Inlet clear

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Time:	10:49			
Secchi Readin	Disk g (m)	0.43	Staff Gauge Reading (cm)	32
Depth	Dissolv	ved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m	10.25		115.8	21.4
1 m	10.26		116	21.4
1.5 m	9.74		110	21.4
2 m	9.16		103.3	21.3
2.5 m				

Time:	11:22		
Secchi Disk Reading (m)	0.4		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	8.51	95.7	21.1

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	0
Bridge	
Northern Island	

Inlet clear not flowing; bypass has some algae

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: September 12, 2023	Inspectors	ZP, RA
--------------------------	------------	--------

Time:	13:14			
Secchi Disk 0.5 Secchi Disk 0.5		0.5	Staff Gauge Reading (cm)	36
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	10.97		126.4	22.5
1 m	10.87		125.1	22.3
1.5 m	8.38		95.8	22
2 m	52.5		466	21.8
2.5 m				

Time:	14:02		
Secchi Disk Reading (m)	0.35		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	9.12	105.3	22.4

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	0
Bridge	0
Northern Island	0
Geese and wildlife notes	1 swan

North Pond

Inlet halfway submerged

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: September 27, 2023	Inspectors	ZP, RA	
--------------------------	------------	--------	--

Time:				
Secchi Disk 0.4 Reading (m)		0.4	Staff Gauge Reading (cm)	30
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	9.06		96.8	18.6
1 m	8.95		95.3	18.4
1.5 m	8.75		93	18.3
2 m	8.55		90.9	18.2
2.5 m				

Time:			
Secchi Disk Reading (m)	0.33		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	8.54	89.3	17.6

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	0
Bridge	0
Northern Island	0
Geese and wildlife notes	0

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: October 18, 2023	Inspectors	ZP, RA	
------------------------	------------	--------	--

Time:	10:16			
Secchi Disk 0.53 Reading (m)		0.53	Staff Gauge Reading (cm)	28
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)
0.5 m	8.62		80	12
1 m	8.5		78.8	12
1.5 m	8.38		77.5	11.9
2 m	7.85		72.7	11.9
2.5 m				

Time:	11:11		
Secchi Disk Reading (m)	0.37		
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)
0.5 m or max depth	7.52	69	11.6

Dock	0
Open Water/ West	0
Southeast Island	
Open Water/ East	
Bridge	0
Northern Island	
Geese and wildlife notes	

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Date: Novemb	oer 22, 2023	Inspectors	ZP, RA
--------------	--------------	------------	--------

Time:	10:21	10:21							
Secchi Disk Reading (m)		1	Staff Gauge Reading (cm)	26					
Depth	Dissolved oxygen (mg/L)		Oxygen Saturation (%)	Temperature (C)					
0.5 m	11.9		91.4	4.2					
1 m	12.1		91.8	3.8					
1.5 m	12.18		91.9	3.6					
2 m	12.13		91.5	3.6					
2.5 m									

Time:	11:05									
Secchi Disk Reading (m)	0.3									
Depth	Dissolved oxygen (mg/L)	Oxygen Saturation (%)	Temperature (C)							
0.5 m or max depth	11.18	85.1	4							

Dock	0
Open Water/ West	0
Southeast Island	0
Open Water/ East	
Bridge	0
Northern Island	
Geese and wildlife notes	No geese 1 swan

North Pond

Swan Lake Blvd OGS	
AMICA OGS	
Swan Club OGS	
Lake Outlet	
East Pond Inlet	
East Pond Bypass	
North Pond Inlet	
North Pond Bypass	
Runoff Notes	

Appendix B : Certificates of Analysis

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: Swan Lake Your C.O.C. #: 638250

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/01/23 Report #: R7481416 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C318266

Received: 2023/01/19, 15:07

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	5	N/A	2023/01/23	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	2	N/A	2023/01/20	CAM SOP-00414	SM 23 2510 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: Swan Lake Your C.O.C. #: 638250

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/01/23 Report #: R7481416 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C318266 Received: 2023/01/19, 15:07

Encryption Key

Heba gama

Heba Gamal Project Manager 23 Jan 2023 18:27:34

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: Swan Lake Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		UVT321		UVT322		UVT323			UVT324		
Sampling Date		2023/01/18 10:54		2023/01/18 10:44		2023/01/18 10:49			2023/01/18 10:52		
COC Number		638250		638250		638250			638250		
	UNITS	East Pond Bypass	RDL	AMICA GS	RDL	LAKE Outlet	RDL	QC Batch	East Pond Inlet	RDL	QC Batch
Inorganics											
Conductivity	umbo/cm								6800	1.0	8460700
	unno/cm			! 1		۱ I	1 j	1	0000		
Dissolved Chloride (Cl-)	mg/L	240	3.0	120	2.0	810	10	8460650	2000	20	8460650

Bureau Veritas ID UVT325 2023/01/18 Sampling Date 11:03 638250 COC Number North Pond UNITS RDL QC Batch Inlet Inorganics Conductivity umho/cm 4100 1.0 8460700 Dissolved Chloride (Cl-) 1200 15 8460650 mg/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch

City of Markham Client Project #: spring-2022 Site Location: Swan Lake Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
	Package 1	0.7°C]

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

City of Markham Client Project #: spring-2022 Site Location: Swan Lake Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8460650	Dissolved Chloride (Cl-)	2023/01/23	NC	80 - 120	105	80 - 120	ND, RDL=1.0	mg/L	2.8	20
8460700	Conductivity	2023/01/20			101	85 - 115	ND, RDL=1.0	umho/cm	0.41	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Page 5 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: Swan Lake Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	East Pond Bypass
Last Sample:	North Pond Inlet
Sample Count:	5

	Relinquished By			Received By						
Zal Print las	7 Passign .	Date	2023/01/23	Polit	Side	Date	Lov210111G			
canna parmigan	. form	Time (24 HR)	12:00	MAAR FESLAGE	£ ~	Time (24 HR)	150			
Pript	Sign	Date	YYY)7MM/DD	Print	Sign	Date	YYYY/MM/DD			
		Time (24 HR)	HIS NOW			Time (24 HR)	Hilsand			
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	YYYY7MM/00			
		Time (24 HR)	HHI;MM			Time (24 HR)	THUMM			

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

	Triage In	formation	1946 S. 14					
Sampled By (Print) Zahva ParMicgar	# of Coolers/Pkgs:	Ri Mi	ush 🗌 cro 🗌	Immediate 7	Гest 🗌	Foo	od Resid d Chemis	ue 🗌 try 🗍
	*** LABORATO	RY USE ONLY **						
Received At	Lab Comments:		Custod	y Seal	Cooling Media	Ter	nperatur	e °C
	10 X 02 15 07	5 .	Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
Labeled By	Grace (Hongmei) Zhao			\mathcal{N}	7	0	0	2
Verified By	RUK ENV-2028		Drinking Water	r Metals Preser	vation Check Done	(Circle)	YES	NO
	3					COF	FCD-0038	3/3

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: SWAN LAKE Your C.O.C. #: 650893

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/02/14 Report #: R7509487 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C339473

Received: 2023/02/09, 15:52

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	3	N/A	2023/02/14	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	N/A	2023/02/13	CAM SOP-00414	SM 23 2510 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: SWAN LAKE Your C.O.C. #: 650893

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/02/14 Report #: R7509487 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C339473 Received: 2023/02/09, 15:52

Encryption Key

Grace (Hongmei) Zhao Project Manager 14 Feb 2023 16:44:43

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VAH942		VAH943		VAH944		
Sampling Data		2023/02/08		2023/02/08		2023/02/08		
Samping Date		10:25		10:35		10:40		
COC Number		650893		650893		650893		
	UNITS	AMICA-OGS	RDL	EP-IN	RDL	NP-IN	RDL	QC Batch
Inorganics								
Conductivity	umho/cm	1800	1.0	12000	1.0	2500	1.0	8499994
Dissolved Chloride (Cl-)	mg/L	450	5.0	3900	40	650	7.0	8499938
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							

Page 3 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each te	mperature is the ave	rage of up to thi	ree cooler temperatures taken at receipt
Γ	Package 1	5.7°C	

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

		Matrix	Matrix Spike		SPIKED BLANK		Method Blank)	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8499938	Dissolved Chloride (Cl-)	2023/02/14	NC	80 - 120	102	80 - 120	ND, RDL=1.0	mg/L	2.6	20
8499994	Conductivity	2023/02/13			100	85 - 115	ND, RDL=1.0	umho/cm	0.22	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Page 5 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

ecoc Number 7650893

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

	Relinquished By				Received By		
Dura marilaria	7 100000000	Date	2023/02/08	DI DIADOS 2	0	Date	2022 /02/09
Cahra Parmigan	- poor my	Time (24 HR)	11	RUPTOPER	Rupida	Time (24 HR)	15:52
- Doubt	Sine	Date	ivyy/MM/00	Theorem		Date	1771/MM/DD
		Time (24 HR)	HESAM	Franc	3/971	Time (24 HR)	- HESH
	line.	Date	VYYY/AMA/DD			Date	PTPE/MM/DD
est[]1	-21077	Time (24 HR)	HHERMAN	: (PET) (28 -	2020	Time (24 HR)	HHIMM

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage Information		
Sampled By (Print)	# of Coolers/Pkgs	Rush	Immediate Test	Food Residue
Zahra parhizgani	(Micro		Food Chemistry

	*** Labor	atory Use Only ***					
		Custod	y Seal	Cooling Media		Temperature	°C
Received At	Lab Comments:	Present ((N)	Intact (V/N)	Present (Y/N)	1	2	3
Terror	09-Feb-23 15:52	7	7	N	6	5	6
Labeled By					Ŭ		U
2 Contraction 1	C339473	B					
Verified By	AVI ENV.400	Drinking Water M	Metals Preservatio	on Check Done (Circle	e) YES	NO	

COR FCD-00340 /5 PAGE 1 of 1

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: SWAN LAKE Your C.O.C. #: 653633

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/02/14 Report #: R7509460 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C340919

Received: 2023/02/10, 15:15

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	6	N/A	2023/02/14	CAM SOP-00463	SM 23 4500-Cl E m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: PB22006 Your Project #: spring-2022 Site Location: SWAN LAKE Your C.O.C. #: 653633

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/02/14 Report #: R7509460 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C340919 Received: 2023/02/10, 15:15

Encryption Key

Grace (Hongmei) Zhao Project Manager 14 Feb 2023 16:20:52

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VAP507			VAP508	VAP509		VAP510		VAP511		
Sampling Date		2023/02/09 10:30			2023/02/09 10:35	2023/02/09 10:40		2023/02/09 10:45		2023/02/09 10:50		
COC Number		653633			653633	653633		653633		653633		
	UNITS	EP-South	RDL	QC Batch	EP-Inlet	NP-IN	RDL	SL-BLV	RDL	AMICA-OGS	RDL	QC Batch
Inorganics												
Inorganics		1		1				1		1		
Inorganics Dissolved Chloride (Cl-)	mg/L	960	10	8501836	360	340	4.0	120	1.0	300	4.0	8501872

Bureau Veritas ID		VAP512		
Sampling Date		2023/02/09		
COC Number		653633		
	UNITS	SLB-OGS	RDL	QC Batch
Inorganics				
inorganies				
Dissolved Chloride (Cl-)	mg/L	420	5.0	8501872
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	itch			

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

perature is the	average of up to	three cooler te	nperatures t	aken at receip	pt			
Package 1	4.3°C							
F	Package 1	Package 1 4.3°C						

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8501836	Dissolved Chloride (Cl-)	2023/02/14	NC	80 - 120	104	80 - 120	ND, RDL=1.0	mg/L	0.40	20
8501872	Dissolved Chloride (Cl-)	2023/02/14	NC	80 - 120	104	80 - 120	ND, RDL=1.0	mg/L	2.5	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Page 5 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: spring-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your P.O. #: PB22006 Your Project #: SPRING-2022 Site Location: SWAN LAKE Your C.O.C. #: 675575

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/03/31 Report #: R7569608 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C385756

Received: 2023/03/27, 15:00

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	5	N/A	2023/03/31	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	N/A	2023/03/29	CAM SOP-00414	SM 23 2510 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: PB22006 Your Project #: SPRING-2022 Site Location: SWAN LAKE Your C.O.C. #: 675575

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/03/31 Report #: R7569608 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C385756 Received: 2023/03/27, 15:00

Encryption Key

Grace (Hongmei) Zhao Project Manager 31 Mar 2023 15:45:34

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Client Project #: SPRING-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VJY196		VJY197			VJY198			VJY199		
Sampling Data		2023/03/24		2023/03/24			2023/03/24			2023/03/24		
Sampling Date		10:00		10:00			10:05			10:10		
COC Number		675575		675575			675575			675575		
	UNITS	Lake Outlet	RDL	EP-IN	RDL	QC Batch	EP-Bypass	RDL	QC Batch	NP-IN	RDL	QC Batch
Inorganics												
Conductivity	umho/cm	1100	1.0	5100	1.0	8579952				2700	1.0	8579952
Dissolved Chloride (Cl-)	mg/L	280	5.0	1300	10	8579810	180	1.0	8579810	630	5.0	8579810

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Bureau Veritas ID		VJY200								
Sampling Data		2023/03/24								
Sampling Date		10:15								
COC Number		675575								
	UNITS	NP-Bypass	RDL	QC Batch						
	Inorganics									
Inorganics										
Inorganics Dissolved Chloride (Cl-)	mg/L	120	1.0	8579810						
Inorganics Dissolved Chloride (Cl-) RDL = Reportable Detection	mg/L Limit	120	1.0	8579810						

City of Markham Client Project #: SPRING-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Client Project #: SPRING-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Matrix Spike		BLANK	Method Blank		RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8579810	Dissolved Chloride (Cl-)	2023/03/31	NC	80 - 120	93	80 - 120	ND, RDL=1.0	mg/L	1.8	20
8579952	Conductivity	2023/03/29			100	85 - 115	ND, RDL=1.0	umho/cm	NC	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Client Project #: SPRING-2022 Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	Lake Outlet
Last Sample:	NP-Bypass
Sample Count:	5

the second s	Relinquished By	月二公 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二			Rece	ived By			
Relit- Contractor	7 1 99	Date	2023/03/24	RAMANDEEPPHUR	Dania	Date		900 7	02
ahra farhizgari	i tanzan	Time (24 HR)	N. ISTA	par may in p	Junda	Time	24 HR)	15.	12
Point		Date	"YYYY/MRA/DD	Print	Sign	Date	Date		P/M6//24
		Time (24 HR)	HIGHM			Time (24 HR)	ł	0CAM
Pettt		Date	1777/1446(200	Print	Date			100	17244/22
		Time (24 HR)	1010000			Time (24 HR)	1	1103994
ss otherwise agreed to, subr	missions and use of serv	vices are governe	d by Bureau Veritas' s	standard terms and conditions w	hich can be fou	nd at www.bvna.	com.		
			Triage Ir	nformation					Aller
mpled By (Print)		# of Cool	ers/Pkgs:						
] [Buch 🗔	lana di second	🗖	2		
when a horacin	ra parkizzani 1			Rush [_]	immediate	est 🔄	F	ood Resid	lue 🗌
and parmigur									
and parnigur				Micro			Foo	d Chemis	try 🗌
and farmour	·			Micro			Foo	od Chemis	stry 🗌
and parmour				Micro 🗌			Foc	od Chemis	itry 🗌
and Farmour			*** LABORATO	Micro			Foc	od Chemis	itry 🗌
Received At	Lab Corr	iments:	*** LABORATO	Micro	y Seal	Cooling Media	Foo	od Chemis	re °C
Received At	Lab Corr	iments:	*** LABORATO	Micro RY USE ONLY *** Custod Present (Y/N)	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foc Te	mperatur 2	re °C
Received At	Lab Corr	iments:	*** LABORATO	Micro RY USE ONLY *** Custod Present (Y/N)	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foc Te	mperatur 2	re °C
Received At	Lab Com	nments:	*** LABORATO	Micro RY USE ONLY *** Custod Present (Y/N)	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1 5	mperatur 2 5	re°C
Received At	Lab Corr 27-Mar-23 Grace (Hongmei	15:00	*** LABORATO	Micro RY USE ONLY *** Custod Present (Y/N)	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foc Te 1 5	mperatur 2 5	re °C
Received At	Lab Com 27-Mar-23 Grace (Hongmei	15:00) Zhao	*** LABORATO	Micro RY USE ONLY *** Custod Present (Y/N) Drinking Water	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1 5	mperatur 2 5	re °C
Received At	27-Mar-23 Grace (Hongmei 111111111111111111111111111111111111	15:00) Zhao	*** LABORATO	Micro	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foc Te 1 5 e (Circle)	mperatur 2 5 YES	re °C
Received At Labeled By Verified By	27-Mar-23 Grace (Hongmei IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	15:00) Zhao	*** LABORATO	Micro	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1 5 e (Circle)	mperatur 2 S YES	re °C

COR FCD-00383/3

Page 1 of 1

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 684376

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/04/20 Report #: R7595991 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3A3337

Received: 2023/04/13, 15:13

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2023/04/17	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	3	N/A	2023/04/17	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/04/18	CAM SOP-00412	SM 23 2120C m
Conductivity	3	N/A	2023/04/17	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/04/14	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/04/18	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/04/18	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	3	2023/04/15	2023/04/17	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/04/18	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	2	2023/04/17	2023/04/17	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	1	2023/04/17	2023/04/18	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/04/17	2023/04/18	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 684376

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/04/20 Report #: R7595991 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3A3337

Received: 2023/04/13, 15:13

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Grace (Hongmei) Zhao Project Manager 20 Apr 2023 17:55:18

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VNR311		VNR312			VNR313			
Sampling Data		2023/04/12		2023/04/12			2023/04/12			
Sampling Date		10:30		11:00			10:45			
COC Number		684376		684376			684376			
	UNITS	S105	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch	
Inorganics										
Total Ammonia-N	mg/L	0.59	8611966	0.60	0.050	8611966	0.61	0.050	8611966	
Colour	TCU	7	8612491	9	2	8612491				
Conductivity	umho/cm	1600	8610020	1600	1.0	8610020	1600	1.0	8610020	
Total Kjeldahl Nitrogen (TKN)	mg/L	1.0	8612166	1.1	0.10	8611566	1.1	0.10	8611566	
Dissolved Organic Carbon	mg/L	7.7	8609063	8.3	0.40	8609063				
Orthophosphate (P)	mg/L	ND	8612255	ND	0.004	8612255	ND	0.004	8612255	
рН	рН	8.10	8610030	8.09		8610030	8.09		8610030	
Total Phosphorus	mg/L	0.010	8612198	0.008	0.004	8612198	0.011	0.004	8612198	
Alkalinity (Total as CaCO3)	mg/L	110	8610027	120	1.0	8610027				
Dissolved Chloride (Cl-)	mg/L	390	8610178	400	5.0	8610178	400	5.0	8610178	
Nitrite (N)	mg/L	ND	8610026	ND	0.010	8610026	ND	0.010	8610026	
Nitrate (N)	mg/L	0.11	8610026	0.10	0.10	8610026	0.12	0.10	8610026	
Nitrate + Nitrite (N)	mg/L	0.11	8610026	0.10	0.10	8610026	0.12	0.10	8610026	
RDL = Reportable Detection Lir	nit									
QC Batch = Quality Control Bat	ch									

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.0°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8609063	Dissolved Organic Carbon	2023/04/14	94	80 - 120	98	80 - 120	ND, RDL=0.40	mg/L	17	20		
8610020	Conductivity	2023/04/17			102	85 - 115	ND, RDL=1.0	umho/c m	0.89	25		
8610026	Nitrate (N)	2023/04/18	95	80 - 120	106	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8610026	Nitrite (N)	2023/04/18	99	80 - 120	107	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8610027	Alkalinity (Total as CaCO3)	2023/04/17			96	85 - 115	ND, RDL=1.0	mg/L	0.78	20		
8610030	рН	2023/04/17			102	98 - 103			0.33	N/A		
8610178	Dissolved Chloride (Cl-)	2023/04/17	NC	80 - 120	104	80 - 120	ND, RDL=1.0	mg/L	0.083	20		
8611566	Total Kjeldahl Nitrogen (TKN)	2023/04/18	98	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	4.1	20	102	80 - 120
8611966	Total Ammonia-N	2023/04/18	95	75 - 125	98	80 - 120	ND, RDL=0.050	mg/L	4.9	20		
8612166	Total Kjeldahl Nitrogen (TKN)	2023/04/18	103	80 - 120	97	80 - 120	ND, RDL=0.10	mg/L	6.7	20	97	80 - 120
8612198	Total Phosphorus	2023/04/18	97	80 - 120	101	80 - 120	ND, RDL=0.004	mg/L	3.0	20	110	80 - 120
8612255	Orthophosphate (P)	2023/04/18	95	80 - 120	100	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8612491	Colour	2023/04/18			101	80 - 120	ND,RDL=2	TCU	NC	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
last Sample:	S115
Sample Count:	3

1

	Relinquished By				Received B	v		
Thur Buthizer	7 1 1800	Date	2023/04/12	Print	, Sign	Date	2023/04/13	
Lahva farmizgari	c.parns) m	Time (24 HR)	HERRINA	KALGI SOLADMARA	Taly	Time (24 HR)	15113	
Print	Sign	Date	10991/MM/2010	Print	Sign	Date	AYYE/MM/0D	
		Time (24 HR)	HHUMM	8		Time (24 HR)	HHAMM	
Print	Sign	Date	1099/W60/DD	Print	Sign	Date	Venny/Miss/Dia	
		Time (24 HR)	1161:4454,1			Time (24 HR)	RECENTED	

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage Info	ormation				Contraction of the		Select	
Sampled By (Print) Zahra farhizgari		# of Coolers/Pkgs:	Rusi	fest 🗌	Food Residue					
		*** LABORATORY	USE ONLY ***							
Received At	Lab Comments:			Custody Seal Cooling Media				Temperature °C		
				Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3	
Labeled By			F	Y	γ	Y	5	6	4	
Verified By			F						-	
		13-Apr-23 15:13		Drinking Wate	r Metals Preser	vation Check Done	e (Circle)	YES	N	
		Hace (Hongmei) Zhao HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		ľ	SV.					
	JD	K ENV-1141	2				co	R FCD-003	83/3	
								Page 1 (of 1	

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 691881

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/04 Report #: R7615054 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B9124

Received: 2023/04/27, 15:03

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses 0	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2023/05/03	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	3	N/A	2023/05/01	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/05/01	CAM SOP-00412	SM 23 2120C m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/05/02	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/05/02	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/05/01	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/04/29	2023/05/03	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/05/02	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/05/02	2023/05/03	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/05/02	2023/05/03	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 691881

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/04 Report #: R7615054 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B9124

Received: 2023/04/27, 15:03

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Grace (Hongmei) Zhao Project Manager 04 May 2023 17:27:02

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VQY246	VQY247			VQY248		
Sampling Date		2023/04/26 10:15	2023/04/26 11:00			2023/04/26 10:30		
COC Number		691881	691881			691881		
	UNITS	S105	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics								
Total Ammonia-N	mg/L	0.29	0.32	0.050	8639090	0.28	0.050	8639090
Colour	TCU	9	8	2	8631396			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.87	0.72	0.10	8641115	0.69	0.10	8641115
Dissolved Organic Carbon	mg/L	8.8	8.7	0.40	8639489			
Orthophosphate (P)	mg/L	ND	ND	0.004	8634648	ND	0.004	8634648
рН	рН	8.19	8.16		8637265			
Total Phosphorus	mg/L	0.011	0.010	0.004	8641014	0.016	0.004	8641014
Alkalinity (Total as CaCO3)	mg/L	110	110	1.0	8637259			
Dissolved Chloride (Cl-)	mg/L	390	390	5.0	8637243	380	5.0	8637243
Nitrite (N)	mg/L	ND	ND	0.010	8637205	ND	0.010	8637205
Nitrate (N)	mg/L	0.15	0.13	0.10	8637205	0.14	0.10	8637205
Nitrate + Nitrite (N)	mg/L	0.15	0.13	0.10	8637205	0.14	0.10	8637205
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit :ch							

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8631396	Colour	2023/05/01			100	80 - 120	ND,RDL=2	TCU	1.3	25		
8634648	Orthophosphate (P)	2023/05/02	92	80 - 120	97	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8637205	Nitrate (N)	2023/05/01	93	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8637205	Nitrite (N)	2023/05/01	96	80 - 120	102	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8637243	Dissolved Chloride (Cl-)	2023/05/01	NC	80 - 120	97	80 - 120	ND, RDL=1.0	mg/L	5.4	20		
8637259	Alkalinity (Total as CaCO3)	2023/05/03			99	85 - 115	ND, RDL=1.0	mg/L	5.9	20		
8637265	рН	2023/05/03			101	98 - 103			0.54	N/A		
8639090	Total Ammonia-N	2023/05/02	99	75 - 125	99	80 - 120	ND, RDL=0.050	mg/L	11	20		
8639489	Dissolved Organic Carbon	2023/05/02	90	80 - 120	93	80 - 120	ND, RDL=0.40	mg/L	0.72	20		
8641014	Total Phosphorus	2023/05/02	99	80 - 120	101	80 - 120	ND, RDL=0.004	mg/L	2.3	20	104	80 - 120
8641115	Total Kjeldahl Nitrogen (TKN)	2023/05/03	95	80 - 120	91	80 - 120	ND, RDL=0.10	mg/L	5.8	20	98	80 - 120

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S115
Sample Count:	3

	Relinguished By			when the second second second second	Receiv	геа ву	Dentest	10	1
		Date	2023/04/10	Jasey prent	Cherry	Date		W23	041
Zaha Dachizaan	2 pahizoun	Time (24 HB)	12430		1. Cook	V Time (24 HR)	15	02
cania parintesan	1	Date	YYYY/MM/DD	- Print	Print Sign			YY YY/1	iille/DD
Print		Time (24 HP)	ANEMM 0			Time (24 HR)	HH:	MIM.
141		Date	xyyy/MM/DD	Print	Sign	Date		11101/2	VIM/DD
Print	Sign	Date	HERBERT			Time (24 HR)	MIR	iythyi
11.124		nime (24 mk)	1000				om		
ss otherwise agreed to, subr	nissions and use of serv	ices are governed	by Bureau Veritas'	standard terms and conditions w	hich can be four	nd at www.bvna.	com.	All Martin	170
			Triage li	nformation			84.		
	A NUMBER OF CONTRACTOR OF CASE								
		# of Coole	ars/Pkgs	1 A.					
pled By (Print)		# 01 COOIE	15/ F Kg5,		25 - 25 V. PCS				
		1		Rush	Immediate T	est 🛄	ł	-ood Residu	ie 🗋
Zaha pachi	70011	1							
cama parmi	L9 CLI			Micro			For	od Chemist	ry L
		A							
	72			A					
	11		1.2	A					
2 . S	a had a state of the second	STATISTICS OF STREET, STRE			March Internet Street Street Street				
			*** LABORAT	ORY USE ONLY	The second			Contract Street and	
					1.0.1		Т	emperature	o°C
Received At	Lab Com	nments:		Custo	dy Seal	Cooling Media	-		
				Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	107
						4	3	2	1
Labeled By	2	27-Apr-23 15:0)3	1	7		-	L	-
	Grace	(Honomai) 7h		8					
	Ullum	(Hongmen) Zna	ao						
Marified Bu								1	1
Verified By	C3	B9124		Dutaking Wat	or Motols Proces	nuation Check Do	ne (Circle)	YES	N
				Drinking wat	er wietais Frese	Vacion check bo	ic (choic,	,	_
	MUM	ENV-931							
								00 000 000	03/3
							C	OK FCD-0030	03/3
								125 2 1	
								The state of the s	+ 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/12 Report #: R7626738 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B9134

Received: 2023/04/27, 15:03

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Phytoplankton (1)	2	N/A	N/A		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by York-Durham Region Environmental Laboratory, 901 McKay Rd., Pickering, ON, L1W 3A3

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/12 Report #: R7626738 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B9134 Received: 2023/04/27, 15:03

Encryption Key

Grace (Hongmei) Zhao Project Manager 12 May 2023 17:59:57

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VQY302	VQY303						
Comulius Data		2023/04/26	2023/04/26						
Sampling Date		10:15	10:30						
COC Number		691886	691886						
	UNITS	S105	S205	QC Batch					
Miscellaneous Parameters									
Subcontract Parameter	N/A	ATTACHED	ATTACHED	8402891					
QC Batch = Quality Control Batch									

Page 3 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.3°C

Results relate only to the items tested.

Page 4 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Grace (Hongmei) Zhao, Project Manager

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

York-Durham Regional Environmental Laboratory 901 McKay Road

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #:	104220	Work ID:	C3B9134
Description: Client: Profile: Sampled By: Sample Count: Authorized by:	C3B9134 Bureau Veritas Laboratories Non-regulated Water Sampling Zahra Parhizgari 2 Sarah Ostler, Group Leader	Report To:	Grace Zhao Bureau Veritas Canada 6740 Campobello Rd Mississauga, ON L5N 2L8 Canada
Workorder Su	mmary		

Analysis Results Comments
10422001 (1) - Microcystis
Estimate
10422001 (1) - Total Cells
Estimate
10422002 (2) - Microcystis
Estimate
10422002 (2) - Total Cells
Estimate

Report Date: 5/12/2023 5:13:15 PM

Report ID: 104220-4730888

Page 1 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 104220

Work ID:

C3B9134

Analytical Results

Lab ID: Matrix: Type:	10422001 Water Surface Water	Sample ID: Location: Description:	1 S105	Criteria:	N/A			Date Date	Received: Collected:	4/28/2023 4/26/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	NKTON (Cells/m	L) (RELM-14)									
Chroococcus		12	cells/mL		1	1		04/28/2023	05/12/2023		
Gleocapsa		31	cells/mL		1	1		04/28/2023	05/12/2023		
Gomphospha	ieria	63	cells/mL		1	1		04/28/2023	05/12/2023		
Microcystis		1900	cells/mL		1	1		04/28/2023	05/12/2023	*	
Total Cells		2000	cells/mL		1	1		04/28/2023	05/12/2023	*	
Lab ID: Matrix: Type:	10422002 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	4/28/2023 4/26/2023	
Lab ID: Matrix: Type: Parameter	10422002 Water Surface Water	Sample ID: Location: Description: Results	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA	10422002 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14)	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Chroococcus	10422002 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4	2 S205 Units cells/mL	Criteria:	N/A RDL	DF	Limit	Date Date Prepared 04/28/2023	Received: Collected: Analyzed 05/12/2023	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Chroococcus Gleocapsa	10422002 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4 12	2 S205 Units cells/mL cells/mL	Criteria:	N/A RDL 1	DF 1	Limit	Date Date Prepared 04/28/2023 04/28/2023	Received: Collected: Analyzed 05/12/2023 05/12/2023	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Chroococcus Gleocapsa Gomphospha	10422002 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4 12 47	2 S205 Units cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1	DF 1 1 1	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 05/12/2023 05/12/2023 05/12/2023	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Chroococcus Gleocapsa Gomphospha Microchaete	10422002 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4 12 47 16	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1 1 1	DF 1 1 1 1	Limit	Date Prepared 04/28/2023 04/28/2023 04/28/2023 04/28/2023 04/28/2023	Received: Analyzed 05/12/2023 05/12/2023 05/12/2023 05/12/2023 05/12/2023	4/28/2023 4/26/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Chroococcus Gleocapsa Gomphospha Microchaete Microcystis	10422002 Water Surface Water	Sample ID: Location: Description: (Results L) (RELM-14) 4 12 4 12 47 16 2600	2 S205 Units cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1 1 1 1	DF 1 1 1 1 1 1	Limit	Date Date Date Prepared 04/28/2023 04/28/2023 04/28/2023 04/28/2023 04/28/2023 04/28/2023	Received: Collected: Analyzed 05/12/2023 05/12/2023 05/12/2023 05/12/2023 05/12/2023 05/12/2023 05/12/2023	4/28/2023 4/26/2023 C	

Report Date: 5/12/2023 5:13:15 PM

Report ID: 104220-4730888

Page 2 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

Vork Region	Р	Pick hone (905)6	ering, ON L 86-0041 Fa	1W 3A3 ax (905)68	6-0664))		
in the source of the second	LAB	ORATOF	RY ANAI	LYSIS I	REPO	RT			JRHA E G I O	MN		
ork Order #: 1	04220			Wor	k ID:		С	3B91	34			
York Region Y 901 McKay Road, Pickering ON L1w : Fax: 905-686-0664 Email: rel@durhan Client Information	ork-Durham egional Environmental Laboratory 3A3 Toll Free: 1-877-551-8877 Local: 905-686-0041 ca Web: www.durham.ca		DB9134	as (lient)	Pa	Non-re Wastewa ^{Chair}	egulate ater,B	ed W iosol ody For	Page ater, id,So	1 of		
Eacility Name: Bureau Verita	as Canada	Company:	ounie	us onenty	1)	hongmei.zhao@bureauveri	itas.com					
Facility Address:					2)							
Facility Address. 6740 Campo	bello Rd.	Quote #:			3)							
Facility Contact: Grace Zhao		PO #:			4)							
Project Information //f and/	eauveritas.com Tel:				5)							
Description C3P0124	ible)	Standard Turnar	round Time (TAT) is	10 business day	TI*RUSH	10 1 212						
Sample(s) Information				To business days	3 🛄	*Rush TAT requires lab ap	proval in adv	ance. Surd	harge will	apply.		
(lab use only) Field ID			Collection						Container Chlorine Ar			
	Location/Description/Comment	(s) M	atrix Type	mm-dd-yy	HH:MM	Test Group(s)	Type	Sent F	Rec'd Fr	Tota	Cr	
			W Surface	4-26-23	00:00	Algaecells(Cvanobacteria)			1	1014		
<u> </u>	S205		W Surface	4-26-23	00:00	Algaecells(Cyanobacteria)			1			
					:							
					;;							
					:						-	
Sampled By:	Zahra Parhizgari		Tel:		(1) S	elect One Applicable Criteria Sanitary Sewer Use By-law	Provid	de Municipa	ality / City /	Descriptio	in I	
Relinquished By (Print/Sign):	Grace Zhao	Date/T	ime:	2023/04/27	0	Storm Sewer Use By-law New Water Main						
LABORATORY LISE ONLY												
Delivery Method: Cour					Received Do							
Dhecked by:	_Labelled by: WO #	104220	104	220	eived By	: KF	ģp	'R 28 20	23 10:	35		
L-COC-NONREG-NOV-2019-REV-	1											

York-Durham Regional Environmental Laboratory 901 McKay Road

Report Date: 5/12/2023 5:13:15 PM

2

Report ID: 104220-4730888

Page 3 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

BUREAU VERITAS
BUREAU VERITAS

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105	
ast Sample:	S205	
Sample Count:	2	

	Relinquished By			1	Rece	ived By			
Print:	7.21 500	Date	202310426	laser phil	leven	1 Date	and a subscription	202	5/04/2
Iwa Parhizgari	c. Purig ni	Time (24 HR)	13:30	1 001 111	10.000	Time (24 HR)	15	03
	Sign	Date	VYYY/MM/DD	Print	<u>K</u> nyr	Date		100	//MM/DD
	in the second	Time (24 HR)	HH:MAN			Time (24 HR)	16	() (SMBR
	5iĝn	Date	YYYY/WM/DD	Print	Sitti	Date		YEE	e/www/dd
		Time (24 HR)	- MHSBANA	ð		Time (24 HR)		HSMM -
Zahra Park	izedi	7	10	Rush 🔄	Immediate	Test 🛄	F	ood Resid	lue 🛄
Zahva Pair	1790 n	Ţ		Rush 🛄 Micro 🔲	Immediate	Test	For	ood Resic	lue
Zahra Park	יוֹזאַמ ה	Ţ	*** LABORATOR		Immediate	Test	For	ood Resic	lue 🗌
Zahva Paik Received At	Lab Com	T ments:	*** LABORATOR	Rush Micro Y USE ONLY *** Cus	Immediate	Test	Foo	ood Resid	itry
Zahra Park	Lab Com	ments: 27-Apr-23 15:	*** LABORATOR	Rush Micro Y USE ONLY *** Cus Present (Y/I	Immediate ody Seal	Test Cooling Media Present (Y/N)	Foo Te	ood Resid od Chemis emperatur 2	itry
Zahra Park Received At	Lab Com	ments: 27-Apr-23 15: ce (Hongmei) ZJ	*** LABORATOR U <i>3</i> 180	Rush Micro Y USE ONLY *** Cus Present (Y/I	Immediate ody Seal I) Intact (Y/N)	Cooling Media Present (Y/N)	For For Te	ood Resid od Chemis emperatur 2	e°C
Zahva Park Received At Labeled By	Lab Com	ments: 27-Apr-23 13: ce (Hongmei) ZJ	*** LABORATOR U <i>3</i> 180	Rush Micro Y USE ONLY *** Cus Present (Y/f	Immediate ody Seal I) Intact (Y/N)	Test Cooling Media Present (Y/N) Y	For For Tre 1 3	emperatur 2	re °C
Zahva Park	Lab Com	ments: 27-Apr-23 13: ce (Hongmei) ZJ HI HIVIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII	*** LABORATOR 0.3 180	Rush Micro Y USE ONLY *** Cus Present (Y/f	Immediate ody Seal I) Intact (Y/N)	Test Cooling Media Present (Y/N) Y	Foo Te	emperatur 2	re °C

COR FCD-00383/3

Page 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/18 Report #: R7634724 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D4808

Received: 2023/05/11, 15:56

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2023/05/16	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	1	N/A	2023/05/15	CAM SOP-00463	SM 23 4500-Cl E m
Chloride by Automated Colourimetry	1	N/A	2023/05/17	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/05/12	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/05/16	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/05/12	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/05/12	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/05/15	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/05/12	2023/05/16	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/05/15	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/05/12	2023/05/15	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/05/12	2023/05/15	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/18 Report #: R7634724 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D4808

Received: 2023/05/11, 15:56

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Grace (Hongmei) Zhao Project Manager 18 May 2023 16:18:59

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VUE010			VUE011			VUE012		
Sampling Date		2023/05/10 10:30			2023/05/10 10:45			2023/05/10 11:00		
COC Number		699299	[]		699299			699299		
	UNITS	S105	RDL	QC Batch	\$115	RDL	QC Batch	S205	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	ND	0.050	8661695	ND	0.050	8661695	ND	0.050	8661695
Colour	TCU	8	2	8661935				9	2	8661935
Conductivity	umho/cm	1500	1.0	8662426				1500	1.0	8662426
Total Kjeldahl Nitrogen (TKN)	mg/L	0.47	0.10	8663019	0.49	0.10	8663019	0.48	0.10	8663019
Dissolved Organic Carbon	mg/L	8.2	0.40	8662117				8.3	0.40	8662117
Orthophosphate (P)	mg/L	ND	0.004	8662231	ND	0.004	8662231	ND	0.004	8662231
рН	рН	8.27		8662431				8.15		8662431
Total Phosphorus	mg/L	0.010	0.004	8662271	0.011	0.004	8662271	0.014	0.004	8662271
Alkalinity (Total as CaCO3)	mg/L	99	1.0	8662412				100	1.0	8662412
Dissolved Chloride (Cl-)	mg/L	400	5.0	8663735				350	4.0	8663704
Nitrite (N)	mg/L	ND	0.010	8662338	ND	0.010	8662338	ND	0.010	8662338
Nitrate (N)	mg/L	0.14	0.10	8662338	0.14	0.10	8662338	0.12	0.10	8662338
Nitrate + Nitrite (N)	mg/L	0.14	0.10	8662338	0.14	0.10	8662338	0.12	0.10	8662338
RDL = Reportable Detection Lin	nit									

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8661695	Total Ammonia-N	2023/05/12	101	75 - 125	100	80 - 120	ND, RDL=0.050	mg/L	NC	20		
8661935	Colour	2023/05/12			99	80 - 120	ND,RDL=2	TCU	0.25	25		
8662117	Dissolved Organic Carbon	2023/05/12	93	80 - 120	97	80 - 120	ND, RDL=0.40	mg/L	NC	20		
8662231	Orthophosphate (P)	2023/05/15	87	80 - 120	92	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8662271	Total Phosphorus	2023/05/15	103	80 - 120	102	80 - 120	ND, RDL=0.004	mg/L	NC	20	98	80 - 120
8662338	Nitrate (N)	2023/05/15	93	80 - 120	95	80 - 120	ND, RDL=0.10	mg/L	1.0	20		
8662338	Nitrite (N)	2023/05/15	97	80 - 120	102	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8662412	Alkalinity (Total as CaCO3)	2023/05/16			101	85 - 115	ND, RDL=1.0	mg/L	17	20		
8662426	Conductivity	2023/05/16			101	85 - 115	ND, RDL=1.0	umho/c m	3.8	25		
8662431	рН	2023/05/16			101	98 - 103			0.028	N/A		
8663019	Total Kjeldahl Nitrogen (TKN)	2023/05/15	109	80 - 120	100	80 - 120	ND, RDL=0.10	mg/L	2.1	20	98	80 - 120
8663704	Dissolved Chloride (Cl-)	2023/05/15	NC	80 - 120	104	80 - 120	ND, RDL=1.0	mg/L	0.32	20		
8663735	Dissolved Chloride (Cl-)	2023/05/17	NC	80 - 120	100	80 - 120	ND, RDL=1.0	mg/L	6.7	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S205
Sample Count:	3

	Relinquished By				Received	Ву	
Zanci Parhizani	7.0.0000	Date	2023/05/10	have a source	de haiser	Date	2023/05/11
carwa tor mesant	of a gran	Time (24 HR)	1-1:30	May SOCHDRANA	Jacq	Time (24 HR)	15:56
Plint	Slav	Date	2128/0004/00	Print	5/00	Date	XXYX/MM/DD
		Time (24 HR)	OFCAME	5		Time (24 HR)	BELMIN
Print	Sign	Date	VYYY/WM/DD	Print	Silan	Date	2022/00/00
		Time (24 HR)	THEME A			Time (24 HR)	PHEMIA

ampled By (Print) Zahra parhizsar	Triage In # of Coolers/Pkgs:	Iformation Rush 🗌 Micro 🔲	Immediate 1	Fest 🗌	Fc	ood Resid d Chemis	ue 🗌 try 🗋	
	*** LABORATO	RY USE ONLY ***						
Received At	Lab Comments:	Custod	ly Seal	Cooling Media	Ter	nperatur	e °C	
		Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3	
Labeled By	11-May-23 15:56	<u>ب</u>	Y	Y	3	3	3	
Verified By	Grace (Hongmei) Zhao							
	C3D4808	Drinking Wate	Drinking Water Metals Preservation Check Done (Circle) YES					

COR FCD-00383/4

Page 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/25 Report #: R7643239 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D4815

Received: 2023/05/11, 15:56

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Phytoplankton (1)	2	N/A	N/A		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by York-Durham Region Environmental Laboratory, 901 McKay Rd., Pickering, ON, L1W 3A3

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/25 Report #: R7643239 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D4815 Received: 2023/05/11, 15:56

Encryption Key

Grace (Hongmei) Zhao Project Manager 25 May 2023 14:25:16

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VUE043	VUE044	
Sampling Data		2023/05/10	2023/05/10	
Sampling Date	VUE043 VUE044 2023/05/10 2023/05/10 10:30 11:00 699308 699308 UNITS S105 S205 eters			
COC Number		699308	699308	
	UNITS	S105	S205	QC Batch
Miscellaneous Parameters				
Subcontract Parameter	N/A	ATTACHED	ATTACHED	8402891
QC Batch = Quality Control Ba	atch			

Page 3 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

Results relate only to the items tested.

Page 4 of 5 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Grace (Hongmei) Zhao, Project Manager

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

LABORATORY ANALYSIS REPORT Work Order #: 104888 Work ID: C3D4815 **Description:** C3D4815 **Client: Bureau Veritas Laboratories** Report To: Grace Zhao Bureau Veritas Canada **Profile:** Non-regulated Water Sampling 6740 Campobello Rd Sampled By: Zahra Parhizgari Mississauga, ON L5N 2L8 Sample Count: 2 Canada Authorized by: Jennifer Koene-Fenton, Laboratory Superintendent

Workorder Summary

Analysis Results Comments
10488801 (1) - Coelosphaerium
Estimate
10488801 (1) - Microcystis
Estimate
10488801 (1) - Specimen A
Pseudanabaena
10488801 (1) - Specimen B
Woronichinia
Estimate
10488801 (1) - Total Cells
Only Cyanobacterial genera reported as per client request.
10488802 (2) - Coelosphaerium
Estimate
10488802 (2) - Microcystis
Estimate
10488802 (2) - Specimen A
Woronichinia
Estimate
10488802 (2) - Total Cells
Only Cyanobacterial genera reported as per client request.

Report Date: 5/25/2023 11:23:21 AM

Report ID: 104888-4754026

Page 1 of 3

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 104888

Work ID:

C3D4815

Analytical Results

Lab ID: Matrix: Type:	10488801 Water Surface Water	Sample ID: Location: Description:	1 S105	Criteria:	N/A			Date Date	Received: Collected:	5/15/2023 5/10/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	ANKTON (Cells/m	L) (RELM-14)									
Coelosphaeri	ium	2400	cells/mL		1	1		05/15/2023	05/23/2023	*	
Gleocapsa		30	cells/mL		1	1		05/15/2023	05/23/2023		
Microcystis		3300	cells/mL		1	1		05/15/2023	05/23/2023	*	
Specimen A		100	cells/mL		1	1		05/15/2023	05/23/2023	*	
Specimen B		2100	cells/mL		1	1		05/15/2023	05/23/2023	*	
Total Cells		7900	cells/mL		1	1		05/15/2023	05/23/2023	*	
		- · ·	-								
Lab ID:	10488802	Sample ID:	2	Criteria:	N/A			Date	Received:	5/15/2023	
Lab ID: Matrix: Type:	10488802 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	5/15/2023 5/10/2023	
Lab ID: Matrix: Type: Parameter	10488802 Water Surface Water	Sample ID: Location: Description: Results	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	5/15/2023 5/10/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA	10488802 Water Surface Water ANKTON (Cells/m	Sample ID: Location: Description: Results L) (RELM-14)	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	5/15/2023 5/10/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Coelosphaeri	10488802 Water Surface Water ANKTON (Cells/m	Sample ID: Location: Description: Results L) (RELM-14) 3500	2 S205 Units cells/mL	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	5/15/2023 5/10/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Coelosphaeri Gleocapsa	10488802 Water Surface Water ANKTON (Cells/m	Sample ID: Location: Description: Results L) (RELM-14) 3500 34	2 S205 Units cells/mL cells/mL	Criteria:	N/A RDL 1	DF 1	Limit	Date Date Prepared 05/15/2023 05/15/2023	Received: Collected: Analyzed 05/22/2023	5/15/2023 5/10/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Coelosphaeri Gleocapsa Merismopedia	10488802 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 3500 34 24	2 S205 Units cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1	DF 1 1 1	Limit	Date Date Prepared 05/15/2023 05/15/2023	Received: Collected: Analyzed 05/22/2023 05/22/2023 05/22/2023	5/15/2023 5/10/2023 C *	
Lab ID: Matrix: Type: Parameter PHYTOPLA Coelosphaeri Gleocapsa Merismopedia Microcystis	10488802 Water Surface Water ANKTON (Cells/m	Sample ID: Location: Description: Results L) (RELM-14) 3500 34 24 24 3500	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1 1	DF 1 1 1 1	Limit	Date Date Date Prepared 05/15/2023 05/15/2023 05/15/2023	Received: Collected: Analyzed 05/22/2023 05/22/2023 05/22/2023 05/22/2023 05/22/2023	5/15/2023 5/10/2023 C *	
Lab ID: Matrix: Type: Parameter PHYTOPLA Coelosphaeri Gleocapsa Merismopedia Microcystis Specimen A	10488802 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 3500 34 24 24 3500 1300	2 S205 Units cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 1 1 1 1 1 1	DF 1 1 1 1 1 1 1	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 05/22/2023 05/22/2023 05/22/2023 05/22/2023 05/22/2023 05/22/2023 05/22/2023	5/15/2023 5/10/2023 C * *	

Report Date: 5/25/2023 11:23:21 AM

Report ID: 104888-4754026

Page 2 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

YOYK Regio	LA	BORATC	ORATORY ANALYSIS REPORT								DURHAM REGION				
Vork Order #:	/ork Order #: 104888				Work ID:							C3D4815			
York Region 201 McKay Road, Pickering ON L1W 901 McKay Road, Pickering ON L1W Fax: 905-686-0664 Email: rel@durha Client Information		3D48	315	Vient	Be	Page 1 of Non-regulated Water, Wastewater,Biosolid,Soil Chain of Custody Form									
Company Name: Bureau Ver	itas Canada	Company:	ave Dialik II s	same as c	silent)	1)	hongmei.zhao@bureauverit	as.com							
Facility Name:		*****				2)									
Facility Address: 6740 Camp	obello Rd.	Quote #: 3													
Facility Contact: Grace Zhao)	PO #:				4)	4)								
Email: hongmei.zhao@bu	reauveritas.com Tel:					5)	5)								
Project Information (if appl	icable)	Standard Turna	round Time (T	AT) is 10	business davs	*RUSH	*Rush TAT requires lab an	proval in adv	ance S	Surchare	no will or	volv			
Description: C3D4815 Sample(s) Information				T	Celler	die e			, i i	urcharg	e win ap		T		
Lab ID				Collec			Cor	ntainer		Chic	orine	Apply Criteria			
(lab use only) Field II	(lab use only) Field ID Location/Description/Commer			уре	mm-dd-yy	HH:MM	Test Group(s)	Туре	Sent	Rec'd	Free	Total	(Y/N) (**		
01 01	S105		W SL	urface	5-10-23	10:30	Algaecells(Cyanobacteria)								
02 02	S205		WS	urface	5-10-23	11:00				1					
				indoo	0 10 20	11.00	Aigaccella(Cyallobactella)								
						:									
						:									
		l				(1)	Select One Applicable Criteri	e Provie	de Muni	icinality)oscriptir			
Sampled By:	Zahra Parhizgari		Tel:				Sanitary Sewer Lise By-law	11000	ac mun	cipality /	City / D	escriptic			
-							Storm Source Line Pulleu								
Relinquished By (Print/Sign):	Grace Zhao	Data	Time	20	22/05/42		Storm Sewer Use By-law								
· · · · · · · · · · · · · · · · · · ·			/ mile	20	123/03/12										
							Other -								
Delivery Method					1	-						2			
Sorted by:	Labelled by:					ed	Jate/Time: By: 5								
Checked by:	Proofed by: WO	#: 10488	8	104	4888	ente	her for	P	194 1 <u>5</u>	5 2023	38:28	-suc			
					1	1 mon	is presoved	l, ext	ian a	1 %	ontro	RONE			
REL-COC-NONREG-NOV-2019-	REV-1					Scally	FIND En an		(15	- 7 7		
	1 La ₹ 1					JEE	LIMS FOR SATTP	RHED	60-0	ALL	May	15,25	02)		

Report Date: 5/25/2023 11:23:21 AM

Report ID: 104888-4754026

Page 3 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory 901 McKay Road

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

Partizani sion	Date Time (24 HR) Date	2023/05/10 (4:30	KAzar _	SOLADHARA	Sely	Date		20231	251
sign sinn	Date	vevv/helka/De				In the 124	HR)	15	156
slim			8 0	Pilit	Shin	Date		1000	MM/D
	Time (24 HR)	HIH (5dRd	<u> </u>		l	Time (24	HR)	11	(A)#4
	Date	PPPy/Wild/DD		Print		Date		YTYY/ HE	HIM(B HIM
	Inne (24 m)		l.		aiah ann ha farr	nine (24			
and use of serv	ices are governed	by Bureau Veritas' s	formation	and conditions Wr	nen can be rou	iu at www.bvna.co			
	2		R	tush 🗌	Immediate 1	est 🗌	Fo	od Residu	le 🗌
			M	icro			Food	l Chemist	ry 🗌
			ie.		10 A			-	
		*** LABORATC	RY USE ONLY *	**			Read .		
			19	Custod	v Seal	Cooling Madia	Ter	neratur	- °C
Lab Com	ments:			Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	
				V	y	Ŋ	3	3	2
	11-May-23	15:56		1					
Gr	ace (Hongmei) Zhao			1				
	C3D4815			Drinking Water	r Metals Preser	vation Check Done	(Circle)	YES	N
			1.3	a state de parte a superiore -		provide state of the second second of	Contraction of the	120000	
	ace (Hongmei) Zhao I III		Drinking Water	vation Check Done	(Circle)	YES		
CUL	ENITZ 10	7.1							
	and use of servi	and use of services are governed # of Coole 2 Lab Comments: 11-May-23 Grace (Hongmei II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	and use of services are governed by Bureau Veritas' s Triage In # of Coolers/Pkgs:	and use of services are governed by Bureau Veritas' standard terms Triage Information # of Coolers/Pkgs: # of Coolers/Pkgs: # ABORATORY USE ONLY *** LABORATORY USE ONLY Lab Comments: 11-May-23 15:56 Grace (Hongmei) Zhao # UNITED TO THE C3D4815	and use of services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms and conditions where the services are governed by Bureau Veritas' standard terms	and use of services are governed by Bureau Veritas' standard terms and conditions which can be four Triage Information # of Coolers/Pkgs: # of Coolers/Pkgs: # of Coolers/Pkgs: # ush I Immediate T Micro # Micro # USE ONLY *** Lab Comments: 11-May-23 15:56 Grace (Hongmei) Zhao # USE ONLY ## C3D4815 Drinking Water Metals Present	and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.cor Triage Information # of Coolers/Pkgs: # of Coolers/Pkgs: # ush interview in	and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com. Triage Information # of Coolers/Pkgs: # of Coolers/Pkgs: Bush Immediate Test Fo Micro Food *** LABORATORY USE ONLY *** Lab Comments: I1-May-23 15:56 Grace (Hongmei) Zhao IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com. Triage Information # of Coolers/Pkgs: # of Coolers/Pkgs: # Description: # of Coolers/Pkgs: # Description: # Description: # Description: # Description: # of Coolers/Pkgs: # Description:

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/31 Report #: R7651035 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3E9242

Received: 2023/05/25, 14:40

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/05/29	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/05/30	CAM SOP-00412	SM 23 2120C m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/05/27	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/05/30	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/05/26	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (2)	2	N/A	2023/05/29	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/05/26	2023/05/26	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/05/29	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/05/29	2023/05/30	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/05/29	2023/05/30	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/05/31 Report #: R7651035 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3E9242

Received: 2023/05/25, 14:40

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Grace (Hongmei) Zhao Project Manager 31 May 2023 16:01:09

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VXH735			VXH736			VXH737		
		2023/05/24			2023/05/24			2023/05/24		
Sampling Date		10:30			10:45			11:00		
COC Number		706256			706256			706256		
	UNITS	S105	RDL	QC Batch	S115	RDL	QC Batch	S205	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	ND	0.050	8690792	ND	0.050	8690792	ND	0.050	8690792
Colour	TCU	10	2	8690603				11	2	8690603
Total Kjeldahl Nitrogen (TKN)	mg/L	0.60	0.10	8690727	0.57	0.10	8690727	0.58	0.10	8690727
Dissolved Organic Carbon	mg/L	8.6	0.40	8687034				8.5	0.40	8687034
Orthophosphate (P)	mg/L	ND	0.004	8687360	ND	0.004	8687360	0.006	0.004	8687360
рН	рН	9.04		8687246				8.61		8687246
Total Phosphorus	mg/L	0.014	0.004	8690709	0.010	0.004	8690709	0.014	0.004	8690709
Dissolved Chloride (Cl-)	mg/L	330	4.0	8687418				330	3.0	8687418
Nitrite (N)	mg/L	ND	0.010	8686890	ND	0.010	8687516	ND	0.010	8686890
Nitrate (N)	mg/L	ND	0.10	8686890	ND	0.10	8687516	ND	0.10	8686890
Nitrate + Nitrite (N)	mg/L	ND	0.10	8686890	ND	0.10	8687516	ND	0.10	8686890
RDL = Reportable Detection Lir	nit	•				•		•	•	

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.7°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8686890	Nitrate (N)	2023/05/26	102	80 - 120	100	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8686890	Nitrite (N)	2023/05/26	107	80 - 120	106	80 - 120	ND, RDL=0.010	mg/L				
8687034	Dissolved Organic Carbon	2023/05/27	98	80 - 120	101	80 - 120	ND, RDL=0.40	mg/L	0.93	20		
8687246	рН	2023/05/26			102	98 - 103			0.11	N/A		
8687360	Orthophosphate (P)	2023/05/29	78 (1)	80 - 120	98	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8687418	Dissolved Chloride (Cl-)	2023/05/29	NC	80 - 120	99	80 - 120	ND, RDL=1.0	mg/L	14	20		
8687516	Nitrate (N)	2023/05/29	97	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8687516	Nitrite (N)	2023/05/29	103	80 - 120	105	80 - 120	ND, RDL=0.010	mg/L				
8690603	Colour	2023/05/30			99	80 - 120	ND,RDL=2	TCU	4.6	25		
8690709	Total Phosphorus	2023/05/30	102	80 - 120	99	80 - 120	ND, RDL=0.004	mg/L	NC	20	102	80 - 120
8690727	Total Kjeldahl Nitrogen (TKN)	2023/05/30	102	80 - 120	103	80 - 120	ND, RDL=0.10	mg/L	12	20	99	80 - 120
8690792	Total Ammonia-N	2023/05/30	101	75 - 125	96	80 - 120	ND, RDL=0.050	mg/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 6 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

	Relinquished By				Rece	ived By	11 A		10 IV. IV	
Luca Printa Laiza	7-19,1220.1	Date	2023/05/24	Print	D Sign	Date		20271	1051	
ednia parmigan	- 100 Jon	Time (24 HR)	Time (24 HR) (석아이이		Ryand	C. Time (2	Time (24 HR)		14:4	
Print		Date	- TEE SPECIFICATI		Sign	Date	Date		TPRESMMUD	
A.M.	Shuk	Date	. YYYYXAAADD	Belar	500	Date	Date		PRESENT PRYVMMUD	
199.MTC	5.070		1914:JuDet		1000	Time (2	24 HR)	1015500		
			Triage Info	ormation					-	
ampled By (Print) Zahva parhiz	9001	# of Coole	ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate 1	Fest	Fo	Food Resid	lue	
ampled By (Print) Zahva parhiz	9 0 6 1	# of Coole	*** LABORATORY	Rush Micro KUSE ONLY ***	Immediate 1	Test	For	Food Resid	lue	
ampled By (Print) Zahva Parhiz Received At	9 a 6 i Lab Cor	# of Coole	ers/Pkgs:	Rush Micro / USE ONLY *** Cust Present (2)	Immediate	Cooling Media	For Te	Food Resid	lue try e °C	
ampled By (Print) Zahra Parhiz Received At	9 asi	# of Coole	*** LABORATORY	Rush Micro Y USE ONLY *** USE ONLY *** Present @N	Immediate	Cooling Media Present (VN)	For Te	Food Resid	lue	
ampled By (Print) Zahra Parhiz Received At Labeled By	P as i	# of Coole	*** LABORATORY *** LABORATORY May-23 14:40 Hongmei) Zhao	Rush Micro Y USE ONLY *** Cust Present Y	Immediate T ody Seal I) Intact (Y/N)	Cooling Media Present (V)N)	For Te 1 4	Food Resid od Chemis emperatur 2 4	itry e °C	
ampled By (Print) Zahra Parhiz Received At Labeled By	9 asi	# of Coole	*** LABORATORY *** LABORATORY 	Rush Micro / USE ONLY *** Cust Present Y	Immediate	Cooling Media Present (VN)	For Te 1 4	Food Resid	itry e °C	
ampled By (Print) Zahra Parhiz Received At Labeled By Verified By	P as i	# of Coole	*** LABORATORY *** LABORATORY 	Rush Micro Y USE ONLY *** Cust Present Y USE ONLY	Immediate	Cooling Media Presen	For Te 1 4	Food Resid od Chemis emperatur 2 4 7	itry	

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/06/20 Report #: R7680776 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3G4182

Received: 2023/06/07, 16:30

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	3	N/A	2023/06/12	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/06/13	CAM SOP-00412	SM 23 2120C m
Conductivity	1	N/A	2023/06/08	CAM SOP-00414	SM 23 2510 m
Conductivity	2	N/A	2023/06/09	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (2)	1	N/A	2023/06/08	CAM SOP-00446	SM 23 5310 B m
Dissolved Organic Carbon (DOC) (2)	1	N/A	2023/06/09	CAM SOP-00446	SM 23 5310 B m
Chlorophyll and Pheophytin in Water (1)	1	2023/06/14	2023/06/14	CAL SOP-00273	SM 23 10200H m
Total Ammonia-N	3	N/A	2023/06/12	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	3	N/A	2023/06/09	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/06/08	2023/06/09	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/06/09	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/06/09	2023/06/09	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/06/09	2023/06/09	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/06/20 Report #: R7680776 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3G4182

Received: 2023/06/07, 16:30

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Grace (Hongmei) Zhao Project Manager 21 Jun 2023 09:42:36

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WAM204			WAM205			WAM206		
Sampling Date		2023/06/07			2023/06/07			2023/06/07 10:30		
COC Number		713650			713650			713650		
	UNITS	S105	RDL	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	0.11	0.050	8715074	ND	0.050	8715074	ND	0.050	8715074
Colour	TCU	11	2	8712803	14	2	8712803			
Conductivity	umho/cm	1500	1.0	8712675	1500	1.0	8712675	1500	1.0	8712712
Total Kjeldahl Nitrogen (TKN)	mg/L	0.57	0.10	8715267	0.67	0.10	8715267	0.74	0.10	8715267
Dissolved Organic Carbon	mg/L	8.2	0.40	8713942	8.6	0.40	8713809			
Orthophosphate (P)	mg/L	0.011	0.004	8712472	0.014	0.004	8712472	ND	0.004	8712472
рН	рН	8.98		8712671	8.61		8712671			
Total Phosphorus	mg/L	0.013	0.004	8715281	0.021	0.004	8715281	0.012	0.004	8715281
Dissolved Chloride (Cl-)	mg/L	350	5.0	8712734	360	5.0	8712734	360	5.0	8712734
Nitrite (N)	mg/L	ND	0.010	8713301	ND	0.010	8713301	ND	0.010	8713301
Nitrate (N)	mg/L	ND	0.10	8713301	ND	0.10	8713301	ND	0.10	8713301
Nitrate + Nitrite (N)	mg/L	ND	0.10	8713301	ND	0.10	8713301	ND	0.10	8713301
Miscellaneous Parameters										
Chlorophyll a	ug/L	11 (1)	1.1	8740135						
Chlorophyll c	ug/L	ND (2)	1.1	8740135						
Pheophytin a	ug/L	1.2 (2)	1.1	8740135						
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Detection limit raised due to sample volume used for analysis.

Spike exceeds method criteria of 80-120% with value of 131.804%. Unable to reanalyze due to method requirements.

(2) Detection limit raised due to sample volume used for analysis.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8712472	Orthophosphate (P)	2023/06/09	94	80 - 120	94	80 - 120	ND, RDL=0.004	mg/L	1.5	20		
8712671	рН	2023/06/09			102	98 - 103			0.16	N/A		
8712675	Conductivity	2023/06/09			101	85 - 115	ND, RDL=1.0	umho/c m	0	10		
8712712	Conductivity	2023/06/08			101	85 - 115	ND, RDL=1.0	umho/c m	0.72	10		
8712734	Dissolved Chloride (Cl-)	2023/06/12	NC	80 - 120	91	80 - 120	ND, RDL=1.0	mg/L	1.7	20		
8712803	Colour	2023/06/13			99	80 - 120	ND,RDL=2	TCU	7.9	25		
8713301	Nitrate (N)	2023/06/09	NC	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	0.12	20		
8713301	Nitrite (N)	2023/06/09	96	80 - 120	102	80 - 120	ND, RDL=0.010	mg/L	0.22	20		
8713809	Dissolved Organic Carbon	2023/06/09	90	80 - 120	96	80 - 120	ND, RDL=0.40	mg/L	9.5	20		
8713942	Dissolved Organic Carbon	2023/06/08	94	80 - 120	97	80 - 120	ND, RDL=0.40	mg/L	4.6	20		
8715074	Total Ammonia-N	2023/06/12	107	75 - 125	100	80 - 120	ND, RDL=0.050	mg/L	NC	20		
8715267	Total Kjeldahl Nitrogen (TKN)	2023/06/09	108	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	2.7	20	100	80 - 120
8715281	Total Phosphorus	2023/06/09	102	80 - 120	104	80 - 120	ND, RDL=0.004	mg/L	17	20	98	80 - 120
8740135	Chlorophyll a	2023/06/14			132 (1)	80 - 120	ND, RDL=0.53	ug/L				
8740135	Chlorophyll c	2023/06/14					ND, RDL=0.53	ug/L				

Page 5 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8740135	Pheophytin a	2023/06/14					0.75, RDL=0.53	ug/L				
N/A = Not Applicable												
Duplicate: P	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.											
Matrix Spike	e: A sample to which a known amount of the ana	lyte of interest h	nas been adde	ed. Used to e	evaluate samp	le matrix inte	erference.					
QC Standard	l: A sample of known concentration prepared by	an external age	ncy under stri	ngent condit	tions. Used as	an indepen	dent check of r	nethod ac	curacy.			
Spiked Blank	k: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	n a second so	ource, has bee	en added. Us	ed to evaluate	method a	ccuracy.			
Method Blar	nk: A blank matrix containing all reagents used ir	n the analytical p	procedure. Us	ed to identif	y laboratory c	ontaminatio	n.					
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)												
NC (Duplicat	NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).											

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

-

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

LABORATORY ANALYSIS REPORT Work Order #: 106137 Work ID: C3G4182 **Description:** C3G4182 Client: Report To: Grace Zhao **Bureau Veritas Laboratories** Bureau Veritas Canada **Profile:** Non-regulated Water Sampling 6740 Campobello Rd Sampled By: Zahra Parhizgari Sample Count: 2 Canada Authorized by: Jennifer Koene-Fenton, Laboratory Superintendent

Workorder Summary

Workorder Comments

Cyanobacterial specimens reported only as per the client's request.

Task Comments

10613701 - 4789256 - MBI/74684

A 10x dilution was required to enumerate several genera. The values reported have been adjusted accordingly and are estimated values.

10613702 - 4789259 - MBI/74686

A 10x dilution was required to enumerate several genera. The values reported have been adjusted accordingly and are estimated values.

Analysis Results Comments
10613701 (1) - Aphanocapsa
Estimate
10613701 (1) - Microcystis
Estimate
10613701 (1) - Small Unidentifiable Algae
Estimate
10613701 (1) - Specimen A
Snowella
10613701 (1) - Specimen B
Woronchinia
Estimate
10613701 (1) - Total Cells
Estimate
10613702 (2) - Aphanocapsa
Estimate

Report Date: 6/15/2023 3:13:52 PM

Report ID: 106137-4802005

Page 1 of 4

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside Legend: limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

Mississauga, ON L5N 2L8

York Region	Yoı N	k-Durham Regional Environmental Laboratory 901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664 LABORATORY ANALYSIS REPORT	DURHAM
Work Order #:	106137	Work ID:	C3G4182
Workorder Su	mmary		
Analysis Results	Comments		
10613702 (2) - Microc	cystis		
Estimate			
10613702 (2) - Small	Unidentifiable Alga	9	
Estimate			
10613702 (2) - Specin	nen A		
Pseudanabaena			
Estimate			
10613702 (2) - Specin	nen B		
Woronchinia			
Estimate			
10613702 (2) - Total (Cells		
Estimate			
10613702 (2) - Uncha	racterized Algae		

Pseudofilament, irregularly shaped cluster of cells with firm mucilaginous sheath. Possibly cyanobacteria genera Hyella.

Report Date: 6/15/2023 3:13:52 PM

Report ID: 106137-4802005

Page 2 of 4

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 106137

Work ID:

C3G4182

Analytical Results

Lab ID: Matrix: Type:	10613701 Water Surface Water	Sample ID: Location: Description:	1 S105	Criteria:	N/A			Date Date	Received: Collected:	6/9/2023 6/7/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	NKTON (Cells/m	L) (RELM-14)									
Aphanocapsa	1	33000	cells/mL		10	1		06/09/2023	06/14/2023	*	
Chroococcus		12	cells/mL		1	1		06/09/2023	06/14/2023		
Merismopedia	a	740	cells/mL		1	1		06/09/2023	06/14/2023		
Microcystis		12000	cells/mL		10	1		06/09/2023	06/14/2023	*	
Small Uniden	tifiable Algae	3000	cells/mL		10	1		06/09/2023	06/14/2023	*	
Specimen A		390	cells/mL		10	1		06/09/2023	06/14/2023	*	
Specimen B		18000	cells/mL		10	1		06/09/2023	06/14/2023	*	
Total Cells		68000	cells/mL		10	1		06/09/2023	06/14/2023	*	
Lab ID: 10613702 Sample ID:											
Lab ID:	10613702	Sample ID:	2	Criteria:	N/A			Date	Received:	6/9/2023	
Lab ID: Matrix: Type:	10613702 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	6/9/2023 6/7/2023	
Lab ID: Matrix: Type: Parameter	10613702 Water Surface Water	Sample ID: Location: Description: Results	2 S205 Units	Criteria:	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	6/9/2023 6/7/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA	10613702 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14)	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	6/9/2023 6/7/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa	10613702 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 24000	2 S205 Units cells/mL	Criteria: MDL	N/A RDL 10	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	6/9/2023 6/7/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chrooccoccus	10613702 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 24000 6	2 S205 Units cells/mL cells/mL	Criteria:	N/A RDL 10	DF 1	Limit	Date Date 06/09/2023 06/09/2023	Received: Collected: Analyzed 06/14/2023 06/14/2023	6/9/2023 6/7/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia	10613702 Water Surface Water	Sample ID: Location: Description: (RESUIts L) (RELM-14) 24000 6 200	2 S205 Units cells/mL cells/mL	Criteria:	N/A RDL 10 1 1	DF 1 1 1	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chrooccoccus Merismopedia Microcystis	10613702 Water Surface Water	Sample ID: Location: Description: (Results L) (RELM-14) 24000 6 200 4600	2 S205 Units cells/mL cells/mL cells/mL	Criteria:	N/A RDL 100 11 10 10	DF 1 1 1 1	Limit	Date Date Date 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023	Received: Collected: Analyzed 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023 C *	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Small Uniden	10613702 Water Surface Water	Sample ID: Location: Description: (Results L) (RELM-14) 24000 6 2000 4600 3000	2 S205 Units cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 10 1 1 10 10	DF 1 1 1 1 1 1 1	Limit	Date Date Date Date Date Date Date Date	Analyzed 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023 C * *	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Small Uniden Specimen A	10613702 Water Surface Water	Sample ID: Location: Description: Results (RELM-14) 24000 6 2000 4600 3000	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 10 1 10 10 10 10 10	DF 1 1 1 1 1 1 1 1	Limit	Date Date Date Date 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023	Analyzed 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Small Uniden Specimen A Specimen B	10613702 Water Surface Water	Sample ID: Location: Description: (Results (RELM-14) 24000 6 2000 4600 3000 3000 550 12000	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 10 1 1 10 10 10 10 10 10	DF 1 1 1 1 1 1 1 1 1 1	Limit	Date Date Prepared 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023	Received: Collected: Analyzed 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Small Uniden Specimen A Specimen B Total Cells	10613702 Water Surface Water	Sample ID: Location: Description: (RELM-14) 24000 24000 6 2000 4600 3000 550 12000 44000	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 110 100 100 100 100 100	DF 1 1 1 1 1 1 1 1 1 1 1 1 1	Limit	Date Date Date Date Date 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023 06/09/2023	Received: Collected: Analyzed 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023 06/14/2023	6/9/2023 6/7/2023 * * * * * * * *	

Report Date: 6/15/2023 3:13:52 PM

Report ID: 106137-4802005

Page 3 of 4

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York Re	gion	ہ LAE	Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664 LABORATORY ANALYSIS REPORT										
/ork Order #: 106137		06137				Wo	rk ID	:	C	:3G4	182	2	
York Region 901 McKay Road, Picken Fax: 905-686-0664 Emai Client Informatio Company Name: B Facility Name:	York- Regic ing ON L1W 3A3 To i: rel@durham.ca W n ureau Veritas C	Durham nal Environmental Laboratory II Free: 1-877-551-8877 Local: 905-686-0041 eb: www.durham.ca anada	Invoice To Company:	36 (leave blar	418 8	2 Client)	R 1) 2)	Non-reg Wastewa Chain eport to (email address) hongmei.zhao@bureauverite	gulated ter,Bio of Custod	ל Wa Soli א For	Page_ ater id,S m	_1 , oil 	f
Facility Address: 6	740 Campobello	Rd.	Quote #:				3	·					
Facility Contact:	race Znao	veritas com Tel:	101.				5)					
Project Informati	on (if applicable)	entascom	Standard Tu	urnaround Ti	ime (TAT) is 10) business days	-*RUSH	*Rush TAT requires lab ap	proval in adva	ince. Su	ircharge	e will apply.	
Description: C	3G4182					Collec	ction		Cont	lainer		Chlorine	Apply
Lab ID				Motrix	Type	mm-dd-vv	нн-м	M Test Group(s)	Type Sent		Rec'd	Free Tr	otal (Y/N) (**
(lab use only)	Field ID	Location/Description/Comment(5)	Watrix	Туре	0.07.02	10.00						
01		\$105		W	Surface	6-07-23	10:00	Algaecells(Cyanobacteria)			1		
07				W	Surface	6-07-23	11:00	Algaecelis(Cyarlobacteria)					
	1												
							:						
							<u> </u>						
							· · ·						
							<u>;</u>						
								1) Select One Applicable Criter	ria Provi	de Munir	cipality	/ City / Des	.cription
Sampled By:		Zahra Parhizgari		Tel	:			Sanitary Sewer Use By-law					
Campied by:								Storm Sewer Use By-law					
Relinquished By	(Print/Sign):	Grace Zhao		Date/Time	:	2023/06/08		New Water Main					
								Other					
LABORATORY U Delivery Method: Sorted by: Checked by:	SE ONLY Cour	ier Drop Off YDREL Pickup Labelled by: Proofed by: WO	#: <u>106</u> 1	37_	10	6137	iv iv	ed Date/Time: ed By:KE ents:		TUN 9	2023	10:47	
REL-COC-NONREC	G-NOV-2019-REV	-1											

York-Durham Regional Environmental Laboratory 901 McKay Road

Report Date: 6/15/2023 3:13:52 PM

2

Report ID: 106137-4802005

Page 4 of 4

Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S11 5
Sample Count:	3 (Swan Lake)

	Relinquished By			Received By							
Dall States Las	10.	Date	203106107	O Print CP	1) Stan A	Date	2022/06/07				
canva parnetar	min	Time (24 HR)	(2-170)	Kupinden	lupe	Time (24 HR)	16:30				
Print .	5007	Date	21492/1814/00	Vint .	Sign	Date	PEN/MM/00				
1		Time (24 HR)	HENN			Time (24 HR)	BR MM				
Print Print	Switt	Date	YYYY/MM/00	Print	Sign	Date	Min ZMichibi				
	Time (24 F		181300			Time (24 HR)	FIFESMA				

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

	Triage Inform	mation						
Sampled By (Print) Zahra Parh309	# of Coolers/Pkgs:	Rush Immediate Test				Food Residue Food Chemistry		
								Current Martin
	*** LABORATORY	USE ONLY ***				A DEC		
Received At	Lab Comments:		Custod	y Seal	Cooling Media	Te	mperatur	e °C
		A 1	Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
Labeled By	07-Jun-23 16:30 Grace (Hongmei) Zhao		Y	7	Y	6	4	9
Verified By	C3G4182 RUK ENV-623		Drinking Wate	r Metals Preser	vation Check Done	e (Circle)	YES	NO
			Į.	Y	Č.	со	R FCD-0038	33/4
		Sec. 8					Page 1 o	f1

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 721753

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/07/19 Report #: R7725198 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3I3522

Received: 2023/06/22, 15:33

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	3	N/A	2023/06/26	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/06/27	CAM SOP-00412	SM 23 2120C m
Conductivity	3	N/A	2023/06/24	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (2)	2	N/A	2023/06/26	CAM SOP-00446	SM 23 5310 B m
Chlorophyll and Pheophytin in Water (1)	1	2023/06/28	2023/06/29	CAL SOP-00273	SM 23 10200H m
Total Ammonia-N	3	N/A	2023/06/25	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	3	N/A	2023/06/24	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/06/23	2023/06/24	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/06/25	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/06/23	2023/06/26	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/06/23	2023/06/26	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 721753

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/07/19 Report #: R7725198 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3I3522

Received: 2023/06/22, 15:33

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

nam

Grace (Hongmei) Zhao Project Manager 20 Jul 2023 11:12:29

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WEM682			WEM683			WEM684		
Sampling Data		2023/06/21			2023/06/21			2023/06/21		
Sampling Date		10:30			11:00			10:45		
COC Number		721753			721753			721753		
	UNITS	S105	RDL	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	ND	0.050	8749009	ND	0.050	8749019	ND	0.050	8749009
Colour	TCU	8	2	8753405	9	2	8753405			
Conductivity	umho/cm	1400	1.0	8750134	1400	1.0	8750134	1400	1.0	8750134
Total Kjeldahl Nitrogen (TKN)	mg/L	0.58	0.10	8748598	0.56	0.10	8748598	0.51	0.10	8748598
Dissolved Organic Carbon	mg/L	7.3	0.40	8751105	7.7	0.40	8751103			
Orthophosphate (P)	mg/L	ND	0.004	8750120	0.010	0.004	8750120	0.010	0.004	8750120
рН	рН	9.20		8750136	8.97		8750136			
Total Phosphorus	mg/L	0.010	0.004	8748607	0.012	0.004	8748607	0.013	0.004	8748607
Dissolved Chloride (Cl-)	mg/L	380	3.0	8750087	390	3.0	8750087	380	3.0	8750087
Nitrite (N)	mg/L	ND	0.010	8750060	ND	0.010	8750060	ND	0.010	8750060
Nitrate (N)	mg/L	ND	0.10	8750060	ND	0.10	8750060	ND	0.10	8750060
Nitrate + Nitrite (N)	mg/L	ND	0.10	8750060	ND	0.10	8750060	ND	0.10	8750060
Miscellaneous Parameters										
Chlorophyll a	ug/L	3.3 (1)	1.1	8761032						
Chlorophyll c	ug/L	ND (1)	1.1	8761032						
Pheophytin a	ug/L	4.0 (1)	1.1	8761032						
RDL = Reportable Detection Lir	nit									
QC Batch = Quality Control Bat	ch									
ND = Not Detected at a concer	ntration equ	al or greater t	than th	e indicated	Detection Lir	nit.				

(1) Detection limit raised due to sample volume used for analysis.

Page 3 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.7°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8748598	Total Kjeldahl Nitrogen (TKN)	2023/06/26	113	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	4.6	20	99	80 - 120
8748607	Total Phosphorus	2023/06/26	103	80 - 120	101	80 - 120	ND, RDL=0.004	mg/L	5.7	20	105	80 - 120
8749009	Total Ammonia-N	2023/06/25	96	75 - 125	97	80 - 120	ND, RDL=0.050	mg/L	NC	20		
8749019	Total Ammonia-N	2023/06/25	96	75 - 125	98	80 - 120	ND, RDL=0.050	mg/L				
8750060	Nitrate (N)	2023/06/24	101	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	0.61	20		
8750060	Nitrite (N)	2023/06/24	105	80 - 120	104	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8750087	Dissolved Chloride (Cl-)	2023/06/26	NC	80 - 120	107	80 - 120	ND, RDL=1.0	mg/L	0.18	20		
8750120	Orthophosphate (P)	2023/06/25	92	80 - 120	94	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8750134	Conductivity	2023/06/24			101	85 - 115	ND, RDL=1.0	umho/c m	0.31	10		
8750136	рН	2023/06/24			101	98 - 103			0.54	N/A		
8751103	Dissolved Organic Carbon	2023/06/26	96	80 - 120	95	80 - 120	ND, RDL=0.40	mg/L	0.99	20		
8751105	Dissolved Organic Carbon	2023/06/26	93	80 - 120	97	80 - 120	ND, RDL=0.40	mg/L	3.5	20		
8753405	Colour	2023/06/27			101	80 - 120	ND,RDL=2	TCU	NC	25		
8761032	Chlorophyll a	2023/06/29			110	80 - 120	ND, RDL=0.53	ug/L				
8761032	Chlorophyll c	2023/06/29					ND, RDL=0.53	ug/L				

Page 5 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8761032	Pheophytin a	2023/06/29					ND, RDL=0.53	ug/L				
N/A = Not Applicable												
Duplicate: P	aired analysis of a separate portion of the same	sample. Used to	evaluate the	variance in t	the measurem	ent.						
Matrix Spike	: A sample to which a known amount of the ana	yte of interest I	nas been adde	d. Used to e	evaluate samp	le matrix int	erference.					
QC Standard	QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.											
Spiked Blank	Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.											

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Q

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #:	106867	Work ID:	C3I3522
Description: Client: Profile: Sampled By: Sample Count:	C3I3522 Bureau Veritas Laboratories Non-regulated Water Sampling Zahra Parhizgari 2	Report To:	Hongmei Zhao Bureau Veritas Canada 6740 Campobello Rd. Missisauga, ON L5N 2L8
Authorized by:	Jennifer Koene-Fenton, Laboratory Superintend	ent	

Workorder Summary

Sample Comments

10686701 (1) - Surface Water

Cyanobacterial specimens reported only as per client request.

10686702 (2) - Surface Water

Cyanobacterial specimens reported only as per client request.

Task Comments

10686701 - 4823393 - MBI/75325

A 10 x dilution was required to enumerate several genera. The values reported have been adjusted accordingly and are estimated values.

10686702 - 4823396 - MBI/75326

A 10 x dilution was required to enumerate several genera. The values reported have been adjusted accordingly and are estimated values.

Analysis Results Comments
10686701 (1) - Aphanocapsa
Estimate
10686701 (1) - Gleocapsa
Estimate
10686701 (1) - Gomphosphaeria
Estimate
10686701 (1) - Merismopedia
Estimate
10686701 (1) - Microcystis
Estimate
10686701 (1) - Small Unidentifiable Algae
Estimate

Report Date: 7/6/2023 3:33:58 PM

Report ID: 106867-4848748

Page 1 of 5

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York-Durham Regional Environmental Laboratory 901 McKay Road

Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #:	106867	Work ID:	C3I3522
Workorder Su	immary		
Analysis Results	s Comments		
10686701 (1) - Specii	men A		
Pseudanabaena			
Estimate			
10686701 (1) - Specii	men B		
Aphanizomenon			
10686701 (1) - Specii	men C		
Snowella			
Estimate			
10686701 (1) - Specii	men D		
Woronichinia			
Estimate			
10686702 (2) - Aphar	nocapsa		
Estimate			
10686702 (2) - Gleoca	apsa		
Estimate			
10686702 (2) - Gomp	hosphaeria		
Estimate			
10686702 (2) - Merisı	nopedia		
Estimate			
10686702 (2) - Microe	cystis		
Estimate			
10686702 (2) - Small	Unidentifiable Algae		
Estimate			
10686702 (2) - Specir	men A		
Pseudanabaena			
10686702 (2) - Specin	men B		
Snowella			
Estimate			
10686702 (2) - Specin	men C		
Woronichinia			
Estimate			

Report Date: 7/6/2023 3:33:58 PM

Report ID: 106867-4848748

Page 2 of 5

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 106867

Work ID:

C3I3522

Workorder Summary

Analysis Results Comments

10686702 (2) - Uncharacterized Algae

Single trichome observed, possibly from the genus Calothrix.

Analytical Results

Lab ID: Matrix: Type:	10686701 Water Surface Water	Sample ID: Location: Description:	1 S105	Criteria:	N/A			Date Date	Received: Collected:	6/26/2023 6/21/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	ANKTON (Cells/m	L) (RELM-14)									
Anabaena		100	cells/mL		1	1		06/26/2023	07/03/2023		
Aphanocapsa	a	91000	cells/mL		10	1		06/26/2023	07/03/2023	*	
Chroococcus		45	cells/mL		1	1		06/26/2023	07/03/2023		
Gleocapsa		680	cells/mL		1	1		06/26/2023	07/03/2023	*	
Gomphospha	ieria	1800	cells/mL		10	1		06/26/2023	07/03/2023	*	
Merismopedi	a	2400	cells/mL		10	1		06/26/2023	07/03/2023	*	
Microcystis		25000	cells/mL		10	1		06/26/2023	07/03/2023	*	
Small Uniden	tifiable Algae	2900	cells/mL		10	1		06/26/2023	07/03/2023	*	
Specimen A		1100	cells/mL		1	1		06/26/2023	07/03/2023	*	
Specimen B		30	cells/mL		1	1		06/26/2023	07/03/2023	*	
Specimen C		430	cells/mL		1	1		06/26/2023	07/03/2023	*	
Specimen D		32000	cells/mL		10	1		06/26/2023	07/03/2023	*	
Total Cells		160000	cells/mL		10	1		06/26/2023	07/03/2023		

Report Date: 7/6/2023 3:33:58 PM

Report ID: 106867-4848748

Page 3 of 5

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 106867

Work ID:

C3I3522

Analytical Results

Lab ID: Matrix: Type:	10686702 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	6/26/2023 6/21/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	NKTON (Cells/m	L) (RELM-14)									
Aphanocapsa	1	120000	cells/mL		10	1		06/26/2023	07/06/2023	*	
Chroococcus		24	cells/mL		1	1		06/26/2023	07/06/2023		
Gleocapsa		490	cells/mL		1	1		06/26/2023	07/06/2023	*	
Gomphospha	eria	2700	cells/mL		10	1		06/26/2023	07/06/2023	*	
Merismopedia	a	2500	cells/mL		10	1		06/26/2023	07/06/2023	*	
Microcystis		20000	cells/mL		10	1		06/26/2023	07/06/2023	*	
Small Uniden	tifiable Algae	3900	cells/mL		10	1		06/26/2023	07/06/2023	*	
Specimen A		500	cells/mL		1	1		06/26/2023	07/06/2023	*	
Specimen B		8600	cells/mL		10	1		06/26/2023	07/06/2023	*	
Specimen C		79000	cells/mL		10	1		06/26/2023	07/06/2023	*	
Total Cells		230000	cells/mL		10	1		06/26/2023	07/06/2023		
Uncharacteriz	zed Algae	21	cells/mL		1	1		06/26/2023	07/06/2023	*	

Report Date: 7/6/2023 3:33:58 PM

Report ID: 106867-4848748

Page 4 of 5

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York Region	Phone (905)686-0041 Fax (905)686-0664											
/ork Order #: 1	06867				Wo	rk ID:			C3I352	2		
York Regime Yoo York Regime Point 901 McKay Road, Pickering ON L1W 3A: Fax: 905-688-0664 Email: rel@durham.cc Client Information	rk-Durham gional Environmental Laboratory 3 Toll Free: 1-877-551-8877 Local: 905-686-0041 a Web: www.durham.ca	C	313	3522	2		Non-re Wastewa ^{Chain}	egulate ater,Bi	Pa ed Wat osolid ody Form	^{₀e_1} er, ,Soil	_ of	Ď
Company Name: Bureau Veritas	s Canada	Company:	(leave bla	ank if same as	Client)	Rep 1)	ort to (email address) hongmei.zhao@bureauveri	tas com				
Facility Name:						2)						
Facility Address: 6740 Campobe	ello Rd.	Quote #:				3)						
Facility Contact: Grace Zhao		PO #:				4)						
Email: hongmei.zhao@burea	auveritas.com Tel:					5)						
Description: C3/3522	ie)	Standard Tur	rnaround T	Time (TAT) is 1) business days	*RUSH	*Rush TAT requires lab a	pproval in ad	vance. Surcha	rge will ap	vlac	
Sample(s) Information	1			Colle	ection	1	Co	ntainer	Chi	orine	Appl	
(lab use only) Field ID	Location/Description/Comment(s))	Matrix	Type	mm-dd-wy	HHIMM	Tast Group(s)	Turne				Criteri
OI GDI		·		1)00	min-dd-yy		Test Group(s)	Туре	Sent Rec	d Free	Total	(Y/N) (
m	S105		W	Surface	6-21-23	10:30	Algaecells(Cyanobacteria)	preserved				
	\$205		W	Surface	6-21-23	11:00	Algaecells(Cyanobacteria)	preserved				
					101 802 V 808 V							
											<u> </u>	
						:						
										-		<u>†</u>
						:					L	
		-										
Sampled By:	Zahra Parhizgari		Tel:			(1) S	elect One Applicable Criter Sanitary Sewer Use By-law Storm Sewer Use By-law	ia Provi	de Municipalit	y / City / D	escriptio	on
Relinquished By (Print/Sign):	Grace Zhao	Da	te/Time:	2	023/06/23		New Water Main					
					-		Other					
LABORATORY USE ONLY					· · · · · · · · · · · · · · · · · · ·							
Delivery Method: Cour Sorted by: Checked by:	ier Drop Off YDREL Pickup Labelled by: Proofed by: WO #:	1064	867		106867	Received Da Received By Commonts:	ate/Time: ::	JUN	26 2023 :	10:28		

York-Durham Regional Environmental Laboratory 901 McKay Road

Report Date: 7/6/2023 3:33:58 PM

-

Report ID: 106867-4848748

Page 5 of 5

Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of Conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S115
Sample Count:	3

	Relinguished By				Received By		
-7 - 10 1000	. Sīan	Date	2023/06/21	Print	A Gion	Date	2023/06/22
Lahin Harhizgay	1 Patrogana	Time (24 HR)	1340	ALAM	flow	Time (24 HR)	1533
Prior :	Star	Date	mm/ma/ab	Print	Sign	Date	HYY/MM/DD
		Time (24 HR)	HHANIS			Time (24 HR)	HH-MMM-
Plint	Sign	Date	WWW75MM/DD	Print	Sinn	Date	19917/MM(/20
t i at a	3	Time (24 HR)	HHISTAG	2		Time (24 HR)	HHIMM

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage Information		
Sampled By (Print)	# of Coolers/Pkgs:			
Zuhra Parhizzani	1	Rush 🗌	Immediate Test	Food Residue
		Micro 🗌		Food Chemistry

Received At	Lab Comments:	Custod	Custody Seal			Temperature °C		
		Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	1	
Labeled By	22-Jun-23 15:33	Y	У	7	6	2	6	
Verified By	C3I3522	Drinking Wate	Drinking Water Metals Preservation Check				1	
							Χ.	

Your P.O. #: PB22006 Your C.O.C. #: 732663

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/07/19 Report #: R7724533 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3K7834

Received: 2023/07/13, 15:45

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	3	N/A	2023/07/17	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/07/14	CAM SOP-00412	SM 23 2120C m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/07/14	CAM SOP-00446	SM 23 5310 B m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/07/17	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/07/14	2023/07/14	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/07/17	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/07/17	2023/07/18	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/07/17	2023/07/18	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: PB22006 Your C.O.C. #: 732663

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/07/19 Report #: R7724533 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3K7834 Received: 2023/07/13, 15:45

Encryption Key

Grace (Hongmei) Zhao Project Manager 19 Jul 2023 16:08:42

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Your P.O. #: PB22006

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WJN131	WJN132			WJN133					
Sampling Data		2023/07/12	2023/07/12			2023/07/12					
Sampling Date		11:30	12:00			11:45					
COC Number		732663	732663			732663					
	UNITS	S105	S205	RDL	QC Batch	\$115	RDL	QC Batch			
Inorganics	norganics										
Colour	TCU	9	11	2	8789030						
Total Kjeldahl Nitrogen (TKN)	mg/L	0.51	0.47	0.10	8793623	0.47	0.10	8793623			
Dissolved Organic Carbon	mg/L	7.1	7.4	0.40	8789710						
Orthophosphate (P)	mg/L	0.006	ND	0.004	8789592	0.009	0.004	8789592			
рН	рН	9.47	9.30		8789971						
Total Phosphorus	mg/L	0.030	0.033	0.004	8793403	0.024	0.004	8793403			
Dissolved Chloride (Cl-)	mg/L	330	350	3.0	8790210	340	3.0	8790210			
Nitrite (N)	mg/L	ND	ND	0.010	8790170	ND	0.010	8790170			
Nitrate (N)	mg/L	ND	ND	0.10	8790170	ND	0.10	8790170			
Nitrate + Nitrite (N)	mg/L	ND	ND	0.10	8790170	ND	0.10	8790170			
RDL = Reportable Detection Lir	nit						•				
QC Batch = Quality Control Bat	ch										

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

City of Markham Your P.O. #: PB22006

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.0°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Your P.O. #: PB22006

			Matrix	Spike	SPIKED BLANK Method Blank		lank	RPD		QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8789030	Colour	2023/07/14			101	80 - 120	ND,RDL=2	TCU	0	25		
8789592	rthophosphate (P) 2023/07/17 82 80 - 120 93 80 - 120		ND, RDL=0.004	mg/L	NC	20						
8789710	Dissolved Organic Carbon	on 2023/07/14 94 80-120 96 80		80 - 120	ND, RDL=0.40	mg/L	1.9	20				
8789971	рН	2023/07/14			102	98 - 103			0.057	N/A		
8790170	Nitrate (N)	2023/07/17	103	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8790170	Nitrite (N)	2023/07/17	108	80 - 120	101	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8790210	Dissolved Chloride (Cl-)	2023/07/17	NC	80 - 120	95	80 - 120	ND, RDL=1.0	mg/L	1.8	20		
8793403	Total Phosphorus	2023/07/18	95	80 - 120	104	80 - 120	ND, RDL=0.004	mg/L	10	20	104	80 - 120
8793623	Total Kjeldahl Nitrogen (TKN)	2023/07/18	NC	80 - 120	91	80 - 120	ND, RDL=0.10	mg/L	20	20	99	80 - 120

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Your P.O. #: PB22006

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S115
Sample Count:	3

	Relinquished By				Received By			
Zahra Parhizon	7. Palana .	Date	2023/07/12	APpart.	A Date		2023/07/13	
Cana partin jun	e l'ann	Time (24 HR)	15.00	BUM	ACC	Time (24 HR)	2023/07/13 1543 	
Print		Date	1995/2886/200	Print	Sian	Date	19992/14/5/20	
		Time (24 HR)	101 halfe			Time (24 HR)	HILMIN	
Print		Date	100%/MA/00	Print	Sigo	Date	WWW/WW/DD	
		Time (24 HR)	RESHA	25		Time (24 HP)	HRUSERA	

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage Information			
Sampled By (Print) Zahva Parhizgari	# of Coolers/Pkgs:		Rush 🗌 Micro 🗌	Immediate Test	Food Residue 🗌
	(4)				

*** LABORATORY USE ONLY ***

Acceived At	Lab Comments:	Custor	Custody Seal		Ten	mperature °C	
		Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
Labeled By	13-Jul-23 15:45	Y	7	7	3	(2
Verified By	Grace (Hongmei) Zhao						
	N4 ENV-857	Drinking Wate	r Metals Preser	vation Check Done	(Circle)	YES	NC

COR FCD-00383/4

Page 1 of 1

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 738869

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/01 Report #: R7745358 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C3M1817

Received: 2023/07/25, 15:32 Sample Matrix: Water

Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/07/31	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/07/27	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/07/28	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/07/27	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/07/31	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/07/27	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/07/26	2023/07/28	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/07/27	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	1	2023/07/26	2023/07/27	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	2	2023/07/26	2023/07/28	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/07/26	2023/07/27	CAM SOP-00407	SM 23 4500-P I

Remarks:

ľ

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: PB22006 Site Location: SWAN LAKE Your C.O.C. #: 738869

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/01 Report #: R7745358 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C3M1817

Received: 2023/07/25, 15:32

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Bureau Veritas 01 Aug 2023 16:27:02

Please direct all questions regarding this Certificate of Analysis to:

Grace (Hongmei) Zhao, Project Manager

Email: hongmei.zhao@bureauveritas.com

Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WMM564		WMM565			WMM566				
Sampling Date		2023/07/24 10:30		2023/07/24 11:00			2023/07/24 10:45				
COC Number		738869		738869			738869				
	UNITS	S105	QC Batch	S205	RDL	QC Batch	S115	RDL	QC Batch		
Inorganics											
Total Ammonia-N	mg/L	ND	8815647	ND	0.050	8815647	ND	0.050	8815647		
Colour	TCU	14	8812070	12	2	8812070					
Conductivity	umho/cm	1300	8815085	1300	1.0	8815085					
Total Kjeldahl Nitrogen (TKN)	mg/L	0.47	8814719	0.46	0.10	8814719	0.43	0.10	8814719		
Dissolved Organic Carbon	mg/L	7.8	8813192	6.8	0.40	8813192					
Orthophosphate (P)	mg/L	ND	8813941	ND	0.004	8813941	ND	0.004	8813941		
рН	рН	9.08	8815082	8.83		8815082					
Total Phosphorus	mg/L	0.013	8813465	0.014	0.004	8813465	0.009	0.004	8813465		
Dissolved Chloride (Cl-)	mg/L	330	8814256	360	4.0	8818437					
Nitrite (N)	mg/L	ND	8813820	ND	0.010	8814241	ND	0.010	8814241		
Nitrate (N)	mg/L	ND	8813820	ND	0.10	8814241	ND	0.10	8814241		
Nitrate + Nitrite (N)	mg/L	ND	8813820	ND	0.10	8814241	ND	0.10	8814241		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Results relate only to the items tested.

0

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

1

QUALITY ASSURANCE REPORT

in.	01/00								
	Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	OC Limits
۲	8812070	VRO	Spiked Blank	Colour	2023/07/27	Value	97	%	80 - 120
-	8812070	VRO	Method Blank	Colour	2023/07/27	ND.RDL=2		TCU	
2	8812070	VRO	RPD	Colour	2023/07/27	NC		%	25
iń	8813192	NS3	Matrix Spike	Dissolved Organic Carbon	2023/07/27		96	%	80 - 120
1	8813192	NS3	Spiked Blank	Dissolved Organic Carbon	2023/07/27		98	%	80 - 120
Q	8813192	NS3	Method Blank	Dissolved Organic Carbon	2023/07/27	ND,		mg/L	
H.						RDL=0.40			
1	8813192	NS3	RPD	Dissolved Organic Carbon	2023/07/27	0.27		%	20
	8813465	MUM	Matrix Spike	Total Phosphorus	2023/07/28		103	%	80 - 120
2	8813465	MUM	QC Standard	Total Phosphorus	2023/07/27		109	%	80 - 120
in .	8813465	MUM	Spiked Blank	Total Phosphorus	2023/07/27		103	%	80 - 120
-	8813465	MUM	Method Blank	Total Phosphorus	2023/07/27	ND, RDL=0.004		mg/L	
	8813465	MUM	RPD	Total Phosphorus	2023/07/28	NC		%	20
ſ	8813820	C_N	Matrix Spike	Nitrite (N)	2023/07/27		90	%	80 - 120
5				Nitrate (N)	2023/07/27		91	%	80 - 120
2	8813820	C_N	Spiked Blank	Nitrite (N)	2023/07/27		102	%	80 - 120
				Nitrate (N)	2023/07/27		93	%	80 - 120
	8813820	C_N	Method Blank	Nitrite (N)	2023/07/27	ND, RDL=0.010		mg/L	
1				Nitrate (N)	2023/07/27	ND, RDL=0.10		mg/L	
	8813820	C_N	RPD	Nitrite (N)	2023/07/27	NC		%	20
Ŵ				Nitrate (N)	2023/07/27	1.3		%	20
٨	8813941	MJ1	Matrix Spike	Orthophosphate (P)	2023/07/27		93	%	80 - 120
300	8813941	MJ1	Spiked Blank	Orthophosphate (P)	2023/07/27		100	%	80 - 120
ļ	8813941	MJ1	Method Blank	Orthophosphate (P)	2023/07/27	ND, RDL=0.004		mg/L	
	8813941	MJ1	RPD	Orthophosphate (P)	2023/07/27	NC		%	20
0	8814241	C_N	Matrix Spike [WMM565-01]	Nitrite (N)	2023/07/27		100	%	80 - 120
Ŵ				Nitrate (N)	2023/07/27		93	%	80 - 120
μ.	8814241	CΝ	Spiked Blank	Nitrite (N)	2023/07/27		102	%	80 - 120
100				Nitrate (N)	2023/07/27		96	%	80 - 120
5	8814241	C_N	Method Blank	Nitrite (N)	2023/07/27	ND, RDL=0.010		mg/L	
Ś				Nitrate (N)	2023/07/27	ND, RDL=0.10		mg/L	
51	8814241	C N	RPD [WMM565-01]	Nitrite (N)	2023/07/27	NC		%	20
4		-		Nitrate (N)	2023/07/27	NC		%	20
ġ.	8814256	MJ1	Matrix Spike	Dissolved Chloride (Cl-)	2023/07/31		NC	%	80 - 120
C	8814256	MJ1	Spiked Blank	Dissolved Chloride (Cl-)	2023/07/31		95	%	80 - 120
0	8814256	MJ1	Method Blank	Dissolved Chloride (Cl-)	2023/07/31	ND, RDL=1.0		mg/L	
h.	8814256	MJ1	RPD	Dissolved Chloride (Cl-)	2023/07/31	0.040		%	20
3	8814719	KJP	Matrix Spike [WMM566-02]	Total Kjeldahl Nitrogen (TKN)	2023/07/27		107	%	80 - 120
M	8814719	KJP	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/07/27		97	%	80 - 120
3h	8814719	KJP	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/07/27		96	%	80 - 120
	8814719	KJP	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/07/27	ND, RDL=0.10		mg/L	
	8814719	KJP	RPD [WMM566-02]	Total Kieldahl Nitrogen (TKN)	2023/07/27	11		%	20
	8815082	SAU	Spiked Blank	рН	2023/07/27		102	%	98 - 103

Page 5 of 7

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

Ø	QA/QC								
ü.	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5	8815082	SAU	RPD	рН	2023/07/27	0.63		%	N/A
-	8815085	SAU	Spiked Blank	Conductivity	2023/07/27		102	%	85 - 115
d.	8815085	SAU	Method Blank	Conductivity	2023/07/27	1.1,		umho/cm	
iA.						RDL=1.0			
**	8815085	SAU	RPD	Conductivity	2023/07/27	0		%	10
Q	8815647	KPJ	Matrix Spike	Total Ammonia-N	2023/07/31		NC	%	75 - 125
μ	8815647	KPJ	Spiked Blank	Total Ammonia-N	2023/07/31		99	%	80 - 120
à.	8815647	KPJ	Method Blank	Total Ammonia-N	2023/07/31	ND,		mg/L	
						RDL=0.050			
e.	8815647	KPJ	RPD	Total Ammonia-N	2023/07/31	13		%	20
7	8818437	YPA	Matrix Spike	Dissolved Chloride (Cl-)	2023/07/31		NC	%	80 - 120
Ø	8818437	YPA	Spiked Blank	Dissolved Chloride (Cl-)	2023/07/31		98	%	80 - 120
-	8818437	YPA	Method Blank	Dissolved Chloride (Cl-)	2023/07/31	ND,		mg/L	
#						RDL=1.0			
ĭ	8818437	YPA	RPD	Dissolved Chloride (Cl-)	2023/07/31	1.1		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 6 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

¥ iii 1 Ø 0 Ľ 5 Ø -Ű 10 Ū 100 H đ Ø Ű in Ő

Ø

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/10 Report #: R7757619 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M1817

Received: 2023/07/25, 15:32

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/07/31	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/07/27	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/07/28	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (2)	2	N/A	2023/07/27	CAM SOP-00446	SM 23 5310 B m
Chlorophyll and Pheophytin in Water (1)	1	2023/08/08	2023/08/09	CAL SOP-00273	SM 23 10200H m
Total Ammonia-N	3	N/A	2023/07/31	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	3	N/A	2023/07/27	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/07/26	2023/07/28	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/07/27	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	1	2023/07/26	2023/07/27	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	2	2023/07/26	2023/07/28	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/07/26	2023/07/27	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 7

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/10 Report #: R7757619 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M1817

Received: 2023/07/25, 15:32

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Bureau Veritas 10 Aug 2023 01:05:51

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WMM564			WMM565			WMM566		
Sampling Date		2023/07/24			2023/07/24			2023/07/24		
COC Number	┟────┤	728860			728960			720060		
		/38809		OC Datab	/38809	0.01	OC Datab	/38809	001	OC Datab
	UNITS	\$105	RDL	QC Batch	\$205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	ND	0.050	8815647	ND	0.050	8815647	ND	0.050	8815647
Colour	TCU	14	2	8812070	12	2	8812070			
Conductivity	umho/cm	1300	1.0	8815085	1300	1.0	8815085			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.47	0.10	8814719	0.46	0.10	8814719	0.43	0.10	8814719
Dissolved Organic Carbon	mg/L	7.8	0.40	8813192	6.8	0.40	8813192			
Orthophosphate (P)	mg/L	ND	0.004	8813941	ND	0.004	8813941	ND	0.004	8813941
рН	рН	9.08		8815082	8.83		8815082			
Total Phosphorus	mg/L	0.013	0.004	8813465	0.014	0.004	8813465	0.009	0.004	8813465
Dissolved Chloride (Cl-)	mg/L	330	4.0	8814256	360	4.0	8818437			
Nitrite (N)	mg/L	ND	0.010	8813820	ND	0.010	8814241	ND	0.010	8814241
Nitrate (N)	mg/L	ND	0.10	8813820	ND	0.10	8814241	ND	0.10	8814241
Nitrate + Nitrite (N)	mg/L	ND	0.10	8813820	ND	0.10	8814241	ND	0.10	8814241
Miscellaneous Parameters										
Chlorophyll a	ug/L	14 (1)	1.3	8843232						
Chlorophyll c	ug/L	1.9 (1)	1.3	8843232						
Pheophytin a	ug/L	>10 (2)	1.3	8843232						
RDL = Reportable Detection Li	nit									
QC Batch = Quality Control Bat	ch									

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Detection limit raised due to sample volume used for analysis.

(2) Detection limit raised due to sample volume used for analysis. Sample exceeds operating range of this method. Low bias is likely. Sample turbidity exceeds operating range of this method. Low bias is likely.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006

GENERAL COMMENTS

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006

			Matrix	Matrix Spike		BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8812070	Colour	2023/07/27			97	80 - 120	ND,RDL=2	TCU	NC	25		
8813192	Dissolved Organic Carbon	2023/07/27	96	80 - 120	98	80 - 120	ND, RDL=0.40	mg/L	0.27	20		
8813465	Total Phosphorus	2023/07/28	103	80 - 120	103	80 - 120	ND, RDL=0.004	mg/L	NC	20	109	80 - 120
8813820	Nitrate (N)	2023/07/27	91	80 - 120	93	80 - 120	ND, RDL=0.10	mg/L	1.3	20		
8813820	Nitrite (N)	2023/07/27	90	80 - 120	102	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8813941	Orthophosphate (P)	2023/07/27	93	80 - 120	100	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8814241	Nitrate (N)	2023/07/27	93	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8814241	Nitrite (N)	2023/07/27	100	80 - 120	102	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8814256	Dissolved Chloride (Cl-)	2023/07/31	NC	80 - 120	95	80 - 120	ND, RDL=1.0	mg/L	0.040	20		
8814719	Total Kjeldahl Nitrogen (TKN)	2023/07/27	107	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	11	20	97	80 - 120
8815082	рН	2023/07/27			102	98 - 103			0.63	N/A		
8815085	Conductivity	2023/07/27			102	85 - 115	1.1, RDL=1.0	umho/c m	0	10		
8815647	Total Ammonia-N	2023/07/31	NC	75 - 125	99	80 - 120	ND, RDL=0.050	mg/L	13	20		
8818437	Dissolved Chloride (Cl-)	2023/07/31	NC	80 - 120	98	80 - 120	ND, RDL=1.0	mg/L	1.1	20		
8843232	Chlorophyll a	2023/08/09			116	80 - 120	ND, RDL=0.51	ug/L				
8843232	Chlorophyll c	2023/08/09					ND, RDL=0.51	ug/L				

QUALITY ASSURANCE REPORT(CONT'D)

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8843232	Pheophytin a	2023/08/09					ND, RDL=0.51	ug/L				
N/A = Not A	pplicable											
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.												
QC Standard	I: A sample of known concentration prepared by	an external agei	ncy under stri	ngent condi	tions. Used as	an indepen	ident check of r	nethod ac	curacy.			
Spiked Blank	k: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	a second so	ource, has bee	en added. Us	sed to evaluate	method a	ccuracy.			
Method Blar	nk: A blank matrix containing all reagents used in	the analytical p	orocedure. Use	ed to identif	y laboratory c	ontaminatic	on.					
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)										eliable		
NC (Duplicat	e RPD): The duplicate RPD was not calculated. Th	e concentratior	n in the sample	e and/or du	plicate was to	o low to per	mit a reliable R	PD calcula	tion (absolute	difference <	= 2x RDL).	

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

York Region LABORATORY ANALYSIS REPORT Work Order #: 108737 Work ID: C3M1817 **Description:** C3M1817 Client: **Bureau Veritas Laboratories** Report To: Grace Zhao Bureau Veritas Canada **Profile:** Non-regulated Water Sampling 6740 Campobello Rd Sampled By: Zahra Parhizgari Mississauga, ON L5N 2L8 Sample Count: 1 Canada Authorized by: Raymond McCurdy, Laboratory Supervisor Workorder Summary

Sample Comments

10873701 (101) - Surface Water

Cyanobacterial specimens reported only as per client request.

Analysis Results Comments
10873701 (101) - Anabaena
Estimate
10873701 (101) - Aphanocapsa
Estimate
10873701 (101) - Merismopedia
Estimate
10873701 (101) - Microcystis
Estimate
10873701 (101) - Small Unidentifiable Algae
Estimate
10873701 (101) - Specimen A
Snowella
10873701 (101) - Specimen B
Leptolyngbya
Estimate
10873701 (101) - Specimen C

Cylindrospermopsis, Filaments approx, 2um in width, Due to the narrowness of the filament cell enumeration could not be performed. An estimated total of 5440 filaments per ml were calculated to be present in the samples. This total has not been included in the final total for cell per ml.

Report Date: 8/4/2023 10:45:43 AM

Report ID: 108737-4920992

Page 1 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside Legend: limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 108737

Work ID:

C3M1817

Analytical Results

Lab ID: Matrix: Type:	10873701 Water Surface Water	Sample ID: Location: Description:	101 S105	Criteria:	N/A			Date Date	Received: Collected:	7/27/2023 7/24/2023	
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	NKTON (Cells/m	L) (RELM-14)									
Anabaena		1900	cells/mL		10	1		07/27/2023	08/03/2023	*	
Aphanocapsa	ı	72000	cells/mL		10	1		07/27/2023	08/03/2023	*	
Chroococcus		220	cells/mL		1	1		07/27/2023	08/03/2023		
Gomphospha	eria	110	cells/mL		1	1		07/27/2023	08/03/2023		
Merismopedia	a	6000	cells/mL		10	1		07/27/2023	08/03/2023	*	
Microcystis		64000	cells/mL		100	1		07/27/2023	08/03/2023	*	
Small Uniden	tifiable Algae	8000	cells/mL		100	1		07/27/2023	08/03/2023	*	
Specimen A		330	cells/mL		1	1		07/27/2023	08/03/2023	*	
Specimen B		1100	cells/mL		10	1		07/27/2023	08/03/2023	*	
Specimen C		See Comment	cells/mL		10	1		07/27/2023	08/03/2023	*	
Total Cells		150000	cells/mL		3	1		07/27/2023	08/03/2023		

Report Date: 8/4/2023 10:45:43 AM

Report ID: 108737-4920992

Page 2 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

	~?~
	Val Danian
	York Region
à	

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 108

108737

Work ID:

C3M1817

York Region	York- Regio	Durham onal Environmental Laboratory	, r	N	181	7			Non-re	gulate	d W	Page ate	 r,	of	
901 McKay Road, Pick	cering ON L1W 3A3 To	oll Free: 1-877-551-8877 Local: 905-686-0041	L	,01		3 ²²			Wastewa	iter,Bl	oso	ia,:	SOII	N	
Client Informati	hail: rel@durham.ca W	eb: www.durham.ca	line a T					-	Cnain	of Custo	ayro	orm		U	
Company Name:	Bureau Veritas C	anada	Company:	O (leave bla	nk if same as	Client)		Re	port to (email address)						
Facility Name:	Bureau Venilas e		Company.					1)	nongmen.znao@bureauvern	as.com					
Facility Address			Quoto #:					2)							
- www.e	6740 Campobello	Rd.	RO #.					3)							
Facility Contact:	Grace Zhao	Tati	F0#.			·····		4)							
Email: hongm Project Informa	ei.zhao@bureauv	eritas.com													
Description:	C3M1817		Standard Turnaround Time (TAT) is 10 business days					ISH	*Rush TAT requires lab ap	oproval in adv	ance. S	urcharg	je will ap	ply.	
Lab ID	mation					Collec	T				lainer		Chi	orine	Criteria
(lab use only)	Field ID	Location/Description/Comment(s	;)	Matrix	Туре	mm-dd-yy	HH:	MM	Test Group(s)	Туре	Sent	Rec'd	Free	Total	(Y/N) (*1)
0)		S105		w	Surface	7-24-23	10-	30	Algaecells(Cyapobacteria)	preserved					
					Gundeo	1 2 7 20	10.	00	/ iguecons(oyunobuotenu)	preserved					
							:								
							:								
							:								
							:	141	Soloot One Applicable Criter	in Drevi	de Muri	alaalitu			
Sampled By:				Tel·					Select One Applicable Onter	ia Provi	ae muni	cipality	/ City / L	escripti	n
Sampled by.		Zanra Parnizgan							J Sanitary Sewer Use By-law						
		Cross Zha-							J Storm Sewer Use By-law						
Relinquished By	(Print/Sign):	Grace Zhao		Date/Time:	2	023/07/26			New Water Main						
									Other						
LABORATORY U	ISE ONLY							L							
Delivery Method: Sorted by: Checked by:	Courie	r Drop Off □ YDREL Pickup □ Labelled by: Proofed by: WO #	1087;	37	108	737	Receiv iv	ved I ved I nents	Date/Time: By: Defe	Ji	JL 27	2023	10:3	4	

Report Date: 8/4/2023 10:45:43 AM

Report ID: 108737-4920992

Page 3 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/10 Report #: R7758869 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3N3661

Received: 2023/08/03, 14:55

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/08/10	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/08/09	CAM SOP-00412	SM 23 2120C m
Conductivity	1	N/A	2023/08/08	CAM SOP-00414	SM 23 2510 m
Conductivity	1	N/A	2023/08/09	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/08/08	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/08/08	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/08/08	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/08/05	2023/08/09	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/08/08	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/08/08	2023/08/09	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/08/08	2023/08/09	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/10 Report #: R7758869 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3N3661

Received: 2023/08/03, 14:55

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Bureau Veritas 10 Aug 2023 17:58:38

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WOZ616		WOZ617			WOZ618		
Sampling Date		2023/08/02 10:30		2023/08/02 11:00			2023/08/02 10:45		
COC Number		744456		744456			744456		
	UNITS	S105	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics									
Total Ammonia-N	mg/L	ND	8834990	ND	0.050	8834990	ND	0.050	8834990
Colour	TCU	12	8832547	23	2	8832547			
Conductivity	umho/cm	1200	8836634	1200	1.0	8836439			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.58	8838769	0.52	0.10	8838782	0.46	0.10	8838782
Dissolved Organic Carbon	mg/L	7.8	8836070	7.5	0.40	8836070			
Orthophosphate (P)	mg/L	0.012	8833555	ND	0.004	8833555	ND	0.004	8833555
рН	рН	8.33	8836631	8.34		8836443			
Total Phosphorus	mg/L	0.015	8838984	0.018	0.004	8838984	0.013	0.004	8838984
Dissolved Chloride (Cl-)	mg/L	290	8836408	290	2.0	8836408			
Nitrite (N)	mg/L	ND	8835075	ND	0.010	8836405	ND	0.010	8835075
Nitrate (N)	mg/L	ND	8835075	ND	0.10	8836405	ND	0.10	8835075
Nitrate + Nitrite (N)	mg/L	ND	8835075	ND	0.10	8836405	ND	0.10	8835075
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit :ch								

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Matrix Spike		BLANK	Method E	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8832547	Colour	2023/08/09			103	80 - 120	ND,RDL=2	TCU	NC	25		
8833555	Orthophosphate (P)	2023/08/08	96	80 - 120	97	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8834990	Total Ammonia-N	2023/08/08	102	75 - 125	102	80 - 120	ND, RDL=0.050	mg/L	NC	20		
8835075	Nitrate (N)	2023/08/08	97	80 - 120	96	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8835075	Nitrite (N)	2023/08/08	105	80 - 120	104	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8836070	Dissolved Organic Carbon	2023/08/08	96	80 - 120	94	80 - 120	ND, RDL=0.40	mg/L	1.8	20		
8836405	Nitrate (N)	2023/08/08	97	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8836405	Nitrite (N)	2023/08/08	105	80 - 120	105	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8836408	Dissolved Chloride (Cl-)	2023/08/10	NC	80 - 120	98	80 - 120	ND, RDL=1.0	mg/L	0.060	20		
8836439	Conductivity	2023/08/09			102	85 - 115	ND, RDL=1.0	umho/c m	0.12	10		
8836443	рН	2023/08/09			102	98 - 103			1.2	N/A		
8836631	рН	2023/08/09			102	98 - 103			1.4	N/A		
8836634	Conductivity	2023/08/08			101	85 - 115	ND, RDL=1.0	umho/c m	0.35	10		
8838769	Total Kjeldahl Nitrogen (TKN)	2023/08/09	NC	80 - 120	110	80 - 120	ND, RDL=0.10	mg/L	5.2	20	104	80 - 120
8838782	Total Kjeldahl Nitrogen (TKN)	2023/08/09	NC	80 - 120	100	80 - 120	ND, RDL=0.10	mg/L	5.7	20	99	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8838984	Total Phosphorus	2023/08/09	97	80 - 120	95	80 - 120	ND, RDL=0.004	mg/L	14	20	100	80 - 120
N/A = Not A	nnlicabla											

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105	
Last Sample:	S115	
Sample Count:	3	

和复建		Relinquished E	3γ			Received By		
74	Palle Jaca i	a sign	Date	20231-08/02	1	N	Date	2013/08/03
canra	familiouri	c farm	Time (24 HR)	MICOUNT	Acom	- Atas	Time (24 HR)	1455
		Sign	Date	1112/3853/00	Pullst	Shiph)	Date	ITTL/MM/DD
			Time (24 HR)	ARE COMPANY.			Time (24 HR)	tiidahiha
		Sign	Date	771557846/00	Pypst	State	Date	11/12/8/86/00
			Time (24 HR)	THENDS			Time (24 HR)	HIGHNA

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage	Information						
Sampled By (Print) Zahra Parhizo) an	# of Coolers/Pkgs:	Ru Mia	ish 🗌 cro 🗌	Immediate T	est 🗌	Foo	od Residu d Chemist	ue 🗌 ry 🗌
		*** LABORAT	ORY USE ONLY **	•		and the second			
Received At	Lab Comment:			Custod	y Seal	Cooling Media	Ter	nperature	e °C
				Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
Labeled By				Ŷ	7	Y I	1	6	2
Verified By								÷.	
		03-Aug-23 15:16		Drinking Wate	r Metals Preser	vation Check Done	(Circle)	YES	NO
		e (Hongmei) Zhao IIIIIIIIIIIIIIIIIIII 3N3661 ENW-1617					COF	8 FCD-0038	3/4

Page 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/15 Report #: R7765665 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3O0052

Received: 2023/08/09, 15:35

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	1	N/A	2023/08/11	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2023/08/13	CAM SOP-00414	SM 23 2510 m
Total Ammonia-N	1	N/A	2023/08/15	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (1)	1	N/A	2023/08/11	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Total Kjeldahl Nitrogen in Water	1	2023/08/11	2023/08/14	CAM SOP-00938	OMOE E3516 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Page 1 of 6

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/15 Report #: R7765665 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C300052 Received: 2023/08/09, 15:35

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WQI057		
Sampling Data		2023/08/04		
		09:00		
COC Number		746905		
	UNITS	FDC	RDL	QC Batch
Inorganics				
Total Ammonia-N	mg/L	ND	0.050	8847393
Conductivity	umho/cm	460	1.0	8846880
Total Kjeldahl Nitrogen (TKN)	mg/L	0.40	0.10	8846862
Dissolved Chloride (Cl-)	mg/L	67	1.0	8845848
Nitrite (N)	mg/L	ND	0.010	8845632
Nitrate (N)	mg/L	ND	0.10	8845632
Nitrate + Nitrite (N)	mg/L	ND	0.10	8845632
RDL = Reportable Detection Lin	nit			

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 10.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

				Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)	QC Sta	ndard
I	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	8845632	Nitrate (N)	2023/08/11	102	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	NC	20		
	8845632	Nitrite (N)	2023/08/11	83	80 - 120	103	80 - 120	ND, RDL=0.010	mg/L	NC	20		
	8845848	Dissolved Chloride (Cl-)	2023/08/11	NC	80 - 120	95	80 - 120	ND, RDL=1.0	mg/L	0.042	20		
I	8846862	Total Kjeldahl Nitrogen (TKN)	2023/08/14	110	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	8.4	20	91	80 - 120
	8846880	Conductivity	2023/08/12			101	85 - 115	ND, RDL=1.0	umho/c m	1.0	10		
	8847393	Total Ammonia-N	2023/08/15	NC	75 - 125	101	80 - 120	ND, RDL=0.050	mg/L	3.7	20		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/24 Report #: R7780342 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C307682

Received: 2023/08/16, 12:44 Sample Matrix: Water

Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/08/17	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/08/21	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/08/17	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/08/17	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/08/18	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/08/17	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/08/16	2023/08/17	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	2	N/A	2023/08/17	CAM SOP-00461	SM 23 4500 P G m
Orthophosphate (low level)	1	N/A	2023/08/22	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/08/17	2023/08/18	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	2	2023/08/17	2023/08/19	CAM SOP-00407	SM 23 4500-P I
Total Phosphorus (Colourimetric)	1	2023/08/23	2023/08/24	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 7

Attention: Zahra Parhizgari

City of Markham **Environmental Services Depart** 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/24 Report #: R7780342 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C307682

Received: 2023/08/16. 12:44

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Bureau Veritas 24 Aug 2023 16:52:17

Please direct all questions regarding this Certificate of Analysis to:

Grace (Hongmei) Zhao, Project Manager

Email: hongmei.zhao@bureauveritas.com

Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

n.

IA

Ű

Ű

0

10

Ū

100

Total Cover Pages : 2 Page 2 of 7

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WRY052		WRY053			WRY054		
Comuling Data		2023/08/16		2023/08/16			2023/08/16		
Sampling Date		10:15		11:00			10:40		
COC Number		751425		751425			751425		
	UNITS	S105	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics									
Total Ammonia-N	mg/L	ND	8859849	ND	0.050	8859849	ND	0.050	8859849
Colour	TCU	8	8860012	9	2	8860012			
Conductivity	umho/cm	1200	8858000	1200	1.0	8858000			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.51	8858609	0.57	0.10	8858609	0.52	0.10	8858609
Dissolved Organic Carbon	mg/L	7.2	8859897	7.4	0.40	8859897			
Orthophosphate (P)	mg/L	ND	8857286	0.019	0.004	8867142	ND	0.004	8857286
рН	рН	9.08	8858004	7.96		8858004			
Total Phosphorus	mg/L	0.010	8858621	0.035	0.004	8872306	0.010	0.004	8858621
Dissolved Chloride (Cl-)	mg/L	320	8857652	320	3.0	8857652			
Nitrite (N)	mg/L	ND	8857533	ND	0.010	8857533	ND	0.010	8857533
Nitrate (N)	mg/L	ND	8857533	ND	0.10	8857533	ND	0.10	8857533
Nitrate + Nitrite (N)	mg/L	ND	8857533	ND	0.10	8857533	ND	0.10	8857533
RDL = Reportable Detection Lin	mit								

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Results relate only to the items tested.

0

QUALITY ASSURANCE REPORT

(f)				QUALITY ASSURA	NCE REPORT				
1	QA/QC								
5	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
-	8857286	MJ1	Matrix Spike	Orthophosphate (P)	2023/08/17		96	%	80 - 120
	8857286	MJ1	Spiked Blank	Orthophosphate (P)	2023/08/17		97	%	80 - 120
\$	8857286	MJ1	Method Blank	Orthophosphate (P)	2023/08/17	ND, RDL=0.004		mg/L	
0	8857286	MJ1	RPD	Orthophosphate (P)	2023/08/17	NC		%	20
H	8857533	C_N	Matrix Spike	Nitrite (N)	2023/08/17		102	%	80 - 120
掘				Nitrate (N)	2023/08/17		89	%	80 - 120
	8857533	C_N	Spiked Blank	Nitrite (N)	2023/08/17		104	%	80 - 120
2				Nitrate (N)	2023/08/17		92	%	80 - 120
0	8857533	C_N	Method Blank	Nitrite (N)	2023/08/17	ND, RDL=0.010		mg/L	
				Nitrate (N)	2023/08/17	ND, RDL=0.10		mg/L	
M	8857533	C_N	RPD	Nitrite (N)	2023/08/17	NC		%	20
Mar.				Nitrate (N)	2023/08/17	NC		%	20
1	8857652	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2023/08/17		NC	%	80 - 120
-	8857652	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2023/08/17		101	%	80 - 120
0	8857652	ADB	Method Blank	Dissolved Chloride (Cl-)	2023/08/17	ND, RDL=1.0		mg/L	
4	8857652	ADB	RPD	Dissolved Chloride (Cl-)	2023/08/17	1.3		%	20
È.	8858000	SAU	Spiked Blank	Conductivity	2023/08/17		100	%	85 - 115
Ū,	8858000	SAU	Method Blank	Conductivity	2023/08/17	ND, RDL=1.0		umho/cm	
۸.	8858000	SAU	RPD	Conductivity	2023/08/17	NC		%	10
iin .	8858004	SAU	Spiked Blank	pH	2023/08/17		102	%	98 - 103
	8858004	SAU	RPD	pH	2023/08/17	2.1		%	N/A
1	8858609	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2023/08/18		109	%	80 - 120
	8858609	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/08/18		98	%	80 - 120
0	8858609	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/08/18		98	%	80 - 120
Ø	8858609	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/08/18	ND, RDL=0.10		mg/L	
₩.	8858609	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2023/08/18	5.7		%	20
101	8858621	мим	Matrix Spike	Total Phosphorus	2023/08/19		94	%	80 - 120
1	8858621	мим	QC Standard	Total Phosphorus	2023/08/19		101	%	80 - 120
1	8858621	MUM	Spiked Blank	Total Phosphorus	2023/08/19		105	%	80 - 120
Ś	8858621	MUM	Method Blank	Total Phosphorus	2023/08/19	ND, RDL=0.004		mg/L	
21	8858621	MUM	RPD	Total Phosphorus	2023/08/19	9.0		%	20
4	8859849	KPJ	Matrix Spike	Total Ammonia-N	2023/08/18		100	%	75 - 125
10	8859849	KPJ	Spiked Blank	Total Ammonia-N	2023/08/18		99	%	80 - 120
0	8859849	KPJ	Method Blank	Total Ammonia-N	2023/08/18	ND, RDL=0.050		mg/L	
Ŵ	8859849	KPJ	RPD	Total Ammonia-N	2023/08/18	NC		%	20
10	8859897	NS3	Matrix Spike	Dissolved Organic Carbon	2023/08/17		94	%	80 - 120
-	8859897	NS3	Spiked Blank	Dissolved Organic Carbon	2023/08/17		96	%	80 - 120
m	8859897	NS3	Method Blank	Dissolved Organic Carbon	2023/08/17	ND, RDL=0.40		mg/L	
30	8859897	NS3	RPD	Dissolved Organic Carbon	2023/08/17	2.9		%	20
	8860012	GID	Spiked Blank	Colour	2023/08/21	-	101	%	80 - 120
	8860012	GID	Method Blank	Colour	2023/08/21	ND,RDL=2		TCU	
	8860012	GID	RPD	Colour	2023/08/21	9.8		%	25

Page 5 of 7

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8867142	ADB	Matrix Spike [WRY053-03]	Orthophosphate (P)	2023/08/22		75 (1)	%	80 - 120
8867142	ADB	Spiked Blank	Orthophosphate (P)	2023/08/22		97	%	80 - 120
8867142	ADB	Method Blank	Orthophosphate (P)	2023/08/22	ND, RDL=0.004		mg/L	
8867142	ADB	RPD [WRY053-03]	Orthophosphate (P)	2023/08/22	8.8		%	20
8872306	SPC	Matrix Spike	Total Phosphorus	2023/08/24		100	%	80 - 120
8872306	SPC	QC Standard	Total Phosphorus	2023/08/24		101	%	80 - 120
8872306	SPC	Spiked Blank	Total Phosphorus	2023/08/24		100	%	80 - 120
8872306	SPC	Method Blank	Total Phosphorus	2023/08/24	ND,		mg/L	
					RDL=0.004			
8872306	SPC	RPD	Total Phosphorus	2023/08/24	0		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

0

	Relinquished	By			Receive	ed By		
Print Zahra Parhizoari	Z. Parkizzan	Date	2023/08/16	Print	Sign Sign	Date	ion 31	08116
Print	Sian	Time (24 HR) Date	YYYY/MM/DD	Print	Sina	Time (24	4 HR)	49 12
	20.91	Time (24 HR)	HH:MM	Fine	3941	Time (24	4 HR) HE	IMM WY
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	1999	NM/DD
		[Time (24 HR)	HHEMM			Time (24	4 HR) HF	HMM
mpled By (Print) Zahra Parhizgari		# of Coole	ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate Te	est 🗌	Food Residu Food Chemist	ue 🗌 ry 🗌
ampled By (Print) Zahra Parhizgari		# of Coole	ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate Te	est 🗌	Food Reside	ue [] ry []
ampled By (Print) Zahra Parhizgari Received At	Lab	# of Coole	ers/Pkgs:	Rush Micro Rush Cu	Immediate Te	Cooling Media	Food Reside Food Chemist	ue [] ny []
ampled By (Print) Zahra Parhizgari Received At	Lab (# of Coole	ers/Pkgs:	Rush Micro Rush Cu	Immediate Te Istody Seal	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2	ue [] ry [] 2 °C 3
ampled By (Print) Zahra Parhizgari Received At Labeled By	Lab (# of Coole	ers/Pkgs:	Rush Micro NY USE ONLY *** Cu Present (Y,	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2°C 3 - 27
ampled By (Print) Zahra Parhizgari Received At Labeled By	Lab (# of Coole	ers/Pkgs:	Rush Micro Rush Cu Rush Cu Present (Y,	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2 °C 3 - 27
Ampled By (Print) Zahra Parhizgari Received At Labeled By Verified By	Lab (# of Coole	ers/Pkgs:	Rush Micro Rush Cu Rush Cu Rush Cu Rush	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2°C 3 - 27

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/30 Report #: R7789149 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3O7682

Received: 2023/08/16, 12:44

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/08/17	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/08/21	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/08/17	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (2)	2	N/A	2023/08/17	CAM SOP-00446	SM 23 5310 B m
Chlorophyll and Pheophytin in Water (1)	2	2023/08/29	2023/08/29	CAL SOP-00273	SM 23 10200H m
Total Ammonia-N	3	N/A	2023/08/18	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	3	N/A	2023/08/17	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/08/16	2023/08/17	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	2	N/A	2023/08/17	CAM SOP-00461	SM 23 4500 P G m
Orthophosphate (low level)	1	N/A	2023/08/22	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/08/17	2023/08/18	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	2	2023/08/17	2023/08/19	CAM SOP-00407	SM 23 4500-P I
Total Phosphorus (Colourimetric)	1	2023/08/23	2023/08/24	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 7

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/08/30 Report #: R7789149 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3O7682

Received: 2023/08/16, 12:44

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE, Calgary, AB, T2E 6P8

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Bureau Veritas 30 Aug 2023 13:01:55

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WRY052		WRY053			WRY054		
Sampling Date		2023/08/16		2023/08/16			2023/08/16		
Sampling Date		10:15		11:00			10:40		
COC Number		751425		751425			751425		
	UNITS	S105	QC Batch	S205	RDL	QC Batch	S115	RDL	QC Batch
Inorganics									
Total Ammonia-N	mg/L	ND	8859849	ND	0.050	8859849	ND	0.050	8859849
Colour	TCU	8	8860012	9	2	8860012			
Conductivity	umho/cm	1200	8858000	1200	1.0	8858000			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.51	8858609	0.57	0.10	8858609	0.52	0.10	8858609
Dissolved Organic Carbon	mg/L	7.2	8859897	7.4	0.40	8859897			
Orthophosphate (P)	mg/L	ND	8857286	0.019	0.004	8867142	ND	0.004	8857286
рН	рН	9.08	8858004	7.96		8858004			
Total Phosphorus	mg/L	0.010	8858621	0.035	0.004	8872306	0.010	0.004	8858621
Dissolved Chloride (Cl-)	mg/L	320	8857652	320	3.0	8857652			
Nitrite (N)	mg/L	ND	8857533	ND	0.010	8857533	ND	0.010	8857533
Nitrate (N)	mg/L	ND	8857533	ND	0.10	8857533	ND	0.10	8857533
Nitrate + Nitrite (N)	mg/L	ND	8857533	ND	0.10	8857533	ND	0.10	8857533
Miscellaneous Parameters									
Chlorophyll a	ug/L	53 (1)	8885435	74 (1)	1.3	8885435			
Chlorophyll c	ug/L	5.4 (1)	8885435	3.3 (1)	1.3	8885435			
Pheophytin a	ug/L	>12 (2)	8885435	>14 (3)	1.3	8885435			
RDL = Reportable Detection Lir	nit								

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Detection limit raised due to sample volume used for analysis.

(2) Detection limit raised due to sample volume used for analysis. Sample turbidity exceeds operating range of this method. Low bias is likely.

(3) Detection limit raised due to sample volume used for analysis. Sample exceeds operating range of this method. Low bias is likely. Sample turbidity exceeds operating range of this method. Low bias is likely.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 22.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8857286	Orthophosphate (P)	2023/08/17	96	80 - 120	97	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8857533	Nitrate (N)	2023/08/17	89	80 - 120	92	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8857533	Nitrite (N)	2023/08/17	102	80 - 120	104	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8857652	Dissolved Chloride (Cl-)	2023/08/17	NC	80 - 120	101	80 - 120	ND, RDL=1.0	mg/L	1.3	20		
8858000	Conductivity	2023/08/17			100	85 - 115	ND, RDL=1.0	umho/c m	NC	10		
8858004	рН	2023/08/17			102	98 - 103			2.1	N/A		
8858609	Total Kjeldahl Nitrogen (TKN)	2023/08/18	109	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	5.7	20	98	80 - 120
8858621	Total Phosphorus	2023/08/19	94	80 - 120	105	80 - 120	ND, RDL=0.004	mg/L	9.0	20	101	80 - 120
8859849	Total Ammonia-N	2023/08/18	100	75 - 125	99	80 - 120	ND, RDL=0.050	mg/L	NC	20		
8859897	Dissolved Organic Carbon	2023/08/17	94	80 - 120	96	80 - 120	ND, RDL=0.40	mg/L	2.9	20		
8860012	Colour	2023/08/21			101	80 - 120	ND,RDL=2	TCU	9.8	25		
8867142	Orthophosphate (P)	2023/08/22	75 (1)	80 - 120	97	80 - 120	ND, RDL=0.004	mg/L	8.8	20		
8872306	Total Phosphorus	2023/08/24	100	80 - 120	100	80 - 120	ND, RDL=0.004	mg/L	0	20	101	80 - 120
8885435	Chlorophyll a	2023/08/29			109	80 - 120	ND, RDL=0.52	ug/L				
8885435	Chlorophyll c	2023/08/29					ND, RDL=0.52	ug/L				

QUALITY ASSURANCE REPORT(CONT'D)

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8885435	Pheophytin a	2023/08/29					ND, RDL=0.52	ug/L				
N/A = Not A	pplicable											
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Matrix Spike	e: A sample to which a known amount of the ana	lyte of interest l	nas been adde	ed. Used to e	evaluate samp	le matrix int	terference.					
QC Standard	d: A sample of known concentration prepared by	an external age	ncy under stri	ngent condi	tions. Used as	an indepen	ident check of r	nethod ac	curacy.			
Spiked Blan	k: A blank matrix sample to which a known amou	nt of the analyte	e, usually from	n a second so	ource, has bee	en added. Us	sed to evaluate	method a	iccuracy.			
Method Bla	nk: A blank matrix containing all reagents used in	the analytical p	procedure. Us	ed to identif	y laboratory c	ontaminatio	on.					
NC (Matrix S recovery cal	Spike): The recovery in the matrix spike was not ca culation (matrix spike concentration was less than	alculated. The r	elative differe ple concentra	nce betweer ation)	n the concenti	ration in the	parent sample	and the s	pike amount v	vas too small	to permit a	reliable
NC (Duplica	te RPD): The duplicate RPD was not calculated. Th	e concentration	n in the sampl	e and/or du	plicate was to	o low to per	mit a reliable R	PD calcula	ation (absolute	e difference <	<= 2x RDL).	
(1) Recovery	y or RPD for this parameter is outside control limi	ts. The overall q	uality control	for this ana	lysis meets ac	ceptability c	riteria.					

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

02

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Phone (905)686-0041 Fax (905)686-0664 LABORATORY ANALYSIS REPORT Work Order #: 109964 Work ID: C307682 Description: C307682 Report To: Hongmei Zhao

Client:Bureau Veritas LaboratoriesProfile:Non-regulated Water SamplingSampled By:Zahra ParhizgariSample Count:2

Authorized by: Jennifer Koene-Fenton, Laboratory Superintendent

Workorder Summary

Workorder Comments

Cyanobacterial specimens reported only as per client request.

Analysis Results Comments

10996401 (1) - Specimen A

Pseudanabaena

10996401 (1) - Specimen B

Cylindrospermopsis. Filaments approx. 2um in width. Due to the narrowness of the filament cell enumeration could not be performed. An estimated total of 19560 filaments per ml were calculated to be present in the sample. This total has not been included in the final total for cell per ml.

10996401 (1) - Specimen C

Woronichinia

10996401 (1) - Total Cells

A 10 x dilution was required to enumerate. The value reported has been adjusted accordingly and is an estimated value.

10996401 (1) - Uncharacterized Algae

Short filaments, approx. 2um in width in screw like coils possibly from the genus Romeria. Due to the narrowness of the filament cell enumeration could not be performed. An estimated total of 320 filaments per ml were calculated to be present in the samples. This total has not been included in the final total for cell per ml.

10996402 (2) - Specimen A

Pseudanabaena

10996402 (2) - Specimen B

Cylindrospermopsis. Filaments approx. 2um in width. Due to the narrowness of the filament cell enumeration could not be performed. An estimated total of 16820 filaments per ml were calculated to be present in the samples. This total has not been included in the final total for cell per ml.

10996402 (2) - Specimen D

Snowella

10996402 (2) - Total Cells

A 10 x dilution was required to enumerate. The value reported has been adjusted accordingly and is an estimated value.

10996402 (2) - Uncharacterized Algae

Short filaments, approx. 2um in width in screw like coils possibly from the genus Romeria. Due to the narrowness of the filament cell enumeration could not be performed. An estimated total of 320 filaments per ml were calculated to be present in the samples. This total has not been included in the final total for cell per ml.

Report Date: 8/30/2023 11:25:42 AM

Report ID: 109964-4984812

Page 1 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

Bureau Veritas Canada

Missisauga, ON L5N 2L8

6740 Campobello Rd.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 109964

Work ID:

C3O7682

Analytical Results

Lab ID:	10996401	Sample ID:	1	Criteria:	N/A			Date	Received:	8/18/2023	
Matrix:	Water	Location:	S105					Date	Collected:	8/16/2023	
Туре:	Surface Water	Description:									
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	NKTON (Cells/m	L) (RELM-14)									
Aphanocapsa	ı	26000	cells/mL		10	10		08/18/2023	08/29/2023		
Chroococcus		1400	cells/mL		10	10		08/18/2023	08/29/2023		
Merismopedia	a	1700	cells/mL		10	10		08/18/2023	08/29/2023		
Microcystis		14000	cells/mL		10	10		08/18/2023	08/29/2023		
Specimen A		1900	cells/mL		10	10		08/18/2023	08/29/2023	*	
Specimen B		See comment	cells/mL		10	10		08/18/2023	08/29/2023	*	
Specimen C		1600	cells/mL		10	10		08/18/2023	08/29/2023	*	
Total Cells		47000	cells/mL		10	10		08/18/2023	08/29/2023	*	
Uncharacteriz	zed Algae	See comment	cells/mL		10	10		08/18/2023	08/29/2023	*	
Lab ID:	10996402	Sample ID:	2	Criteria:	N/A			Date	Received:	8/18/2023	
Lab ID: Matrix:	10996402 Water	Sample ID: Location:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	8/18/2023 8/16/2023	
Lab ID: Matrix: Type:	10996402 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	8/18/2023 8/16/2023	
Lab ID: Matrix: Type: Parameter	10996402 Water Surface Water	Sample ID: Location: Description: Results	2 S205 Units	Criteria:	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA	10996402 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14)	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa	10996402 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4000	2 S205 Units cells/mL	Criteria: MDL	N/A RDL 10	DF 10	Limit	Date Date Prepared 08/18/2023	Received: Collected: Analyzed	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chrooccoccus	10996402 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4000 1100	2 S205 Units cells/mL cells/mL	Criteria: MDL	N/A RDL 10	DF 10 10	Limit	Date Date Prepared 08/18/2023 08/18/2023	Received: Collected: Analyzed 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia	10996402 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 4000 1100 720	2 S205 Units cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100	DF 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis	10996402 Water Surface Water	Sample ID: Location: Description: Results (RELM-14) 4000 1100 720 18000	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100	DF 10 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Specimen A	10996402 Water Surface Water	Sample ID: Location: Description: Results (RELM-14) 4000 1100 720 18000 180	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100	DF 10 10 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Specimen A Specimen B	10996402 Water Surface Water	Sample ID: Location: Description: Results (RELM-14) 4000 1100 720 18000 180 See comment	2 S205 Units cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 10 10 10 10 10 10 10	DF 10 10 10 10 10 10 10	Limit	Date Date Date Date Date 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023	Received: Collected: Analyzed 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Specimen A Specimen B Specimen D	10996402 Water Surface Water	Sample ID: Location: Description: (RESUITS (RELM-14) 4000 1100 1200 1800 1800 5800	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100 100 100	DF 10 10 10 10 10 10 10 10	Limit	Date Date Date Date Date Prepared 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023	Received: Collected: Analyzed 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C * *	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Merismopedia Microcystis Specimen A Specimen B Specimen D Total Cells	10996402 Water Surface Water	Sample ID: Location: Description: (RESUITS 4000 4000 1100 720 18000 1800 580 comment 5300 61000	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100 100 100 10	DF 10 10 10 10 10 10 10 10 10 10	Limit	Date Date Date Date Date Date Prepared 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023 08/18/2023	Received: Analyzed 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023 08/29/2023	8/18/2023 8/16/2023 C * * *	

Report Date: 8/30/2023 11:25:42 AM

Report ID: 109964-4984812

Page 2 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York Regi	on	Phone (LABORA	Pickerir (905)686- TORY	ng, ON L 0041 Fa 7 ANA I	1W 3A3 ax (905)68 L YSIS	36-0664 REPO	RT			DUR	HAM		
ork Order #:	109964				Wo	rk ID:		C	C3O7	7682	2		
York Revium	York-Durham						Non-re	gulate	ed W	Page	<u>1</u> of 7 -	f	
901 McKay Road, Pickering ON	L1W 3A3 Toll Free: 1-877-551-8877 Loca	: 905-686-0041	C30°	7682			Wastewa	ater,Bi	osol	id,S	joil		
Fax: 905-686-0664 Email: rel@c	lurham.ca Web; www.durham.ca	Invoice	To (leave bla	nk if came ac	Client)	Ren	Chain	of Custo	ody Fo	rm K	Ĺ		
Company Name: Bureau	Veritas Canada	Compar	iy:			1)	hongmei.zhao@bureauveri	as.com					
Facility Name:		Quoto #			****	2)		······					
Facility Contact: Grace	ampobello Rd. Zhao	PO #:	•			(3)							
Email: hongmei.zhaoi	@bureauveritas.com Tel:					5)							
Project Information (if	applicable)	Standa	rd Turnaround T	ime (TAT) is 1	0 business days	=====	*Rush TAT requires lab ap	proval in adv	vance. Si	urcharg	e will apply.		
Description: C30768 Sample(s) Information	2				Colle	ction	1	Co	ntainer	1	Chlorine	Apply	
Lab ID (lab use only) Fie	ld ID Location/De	scription/Comment(s)	Matrix	Type	mm-dd-vv	нн:мм	Test Group(s)	Туре	Sent	Rec'd	Free Tot	Criteria	
01		S105	10/	Cudeaa	0.40.00	10:15			advance. Surcharge will apply. Sent Rec'd Free Total Y				
02		\$205	w	Surface	8-16-23	11:00	Algaecells(Cyanobacteria)	preserved		1			
							, ingacconce () an a pastoria /	preserved					
												-	
												-	
						:							
						:							
						:							
Sampled By:	Zahra F	Parhizgari	Tel:	<i></i>		(1) S	elect One Applicable Criter Sanitary Sewer Use By-law	ia Provi	ide Munic	cipality /	City / Descri	ption	
Relinquished By (Print/Si	gn):G	race Zhao	Date/Time:	2	2023/08/16		New Water Main Other						
LABORATORY USE ONI Delivery Method: Sorted by:	Y Courier Drop Off YE Labelled by:		alu	109	964	ed D ed B	ate/Time: y: H	ç	NUG 18	2023	310:15		
REL-COC-NONREG-NOV-20				a a									

York-Durham Regional Environmental Laboratory 901 McKay Road

Report Date: 8/30/2023 11:25:42 AM

Report ID: 109964-4984812

Page 3 of 3

Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of Conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

	Relinquished	By			Receive	ed By		
Print Zahra Parhizoari	Z. Parkizzan	Date	2023/08/16	Print	Sign Sign	Date	ion al	08116
Print	Sian	Time (24 HR) Date	YYYY/MM/DD	Print	Sina	Time (24	4 HR)	49 12
	20.91	Time (24 HR)	HH:MM	Fine	3941	Time (24	4 HR) HE	IMM WY
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	1999	NM/DD
		[Time (24 HR)	HHEMM			Time (24	4 HR) HF	HMM
mpled By (Print) Zahra Parhizgari		# of Coole	ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate Te	est 🗌	Food Residu Food Chemist	ue 🗌 ry 🗌
ampled By (Print) Zahra Parhizgari		# of Coole	ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate Te	est 🗌	Food Reside	ue [] ry []
ampled By (Print) Zahra Parhizgari Received At	Lab	# of Coole	ers/Pkgs:	Rush Micro NRY USE ONLY ***	Immediate Te	Cooling Media	Food Reside Food Chemist	
ampled By (Print) Zahra Parhizgari Received At	Lab (# of Coole	ers/Pkgs:	Rush [] Micro [] DRY USE ONLY *** Cu Present (Y,	Immediate Te Istody Seal	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2	ue [] ry [] 2 °C 3
ampled By (Print) Zahra Parhizgari Received At Labeled By	Lab (# of Coole	ers/Pkgs:	Rush Micro Rush Cu Rush Cu Rush Cu Rush Cu Rush Rush	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2°C 3 - 27
ampled By (Print) Zahra Parhizgari Received At Labeled By	Lab (# of Coole	ers/Pkgs:	Rush Micro Rush Cu Rush Cu Present (Y,	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2 °C 3 - 27
Ampled By (Print) Zahra Parhizgari Received At Labeled By Verified By	Lab (# of Coole	ers/Pkgs:	Rush Micro DRY USE ONLY *** Cu Present (Y,	Immediate Te Istody Seal /N) Intact (Y/N)	Cooling Media Present (Y/N)	Food Reside Food Chemist Temperature 1 2 W W	ue [] ry [] 2°C 3 - 27

Custody Tracking Form

T751425-H

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody).
Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This
number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:S105Last Sample:S115Sample Count:3

	Relinquished By				Received By		
Print	7. Puhizano	Date	2023/08/16	Print	Sign	Date	YYYY/MM/DD
Zahra Parhizgari	2.100000000	Time (24 HR)	12:00H:MM			Time (24 HR)	HH:MM
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	YYYY/MM/DD
		Time (24 HR)	HH:MM			Time (24 HR)	HH:MM
Print	Sign	Date	YYYY/MM/DD	Print	Sign	Date	YYYY/MM/DD
		Time (24 HR)	HH:MM			Time (24 HR)	HH:MM

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

	Triage In	formation		
Sampled By (Print)	# of Coolers/Pkgs:			
		Rush	Immediate Test	Food Residue
Zahra Parhizgari	1	Micro		Food Chemistry

*** LABORATORY USE ONLY **	**						
Received At Lab Comments:		Custod	y Seal	Cooling Media	Ten	nperature	°C
	Prese	ent (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
Labeled By							
Verified By							
	Drink	king Wate	r Metals Preserv	vation Check Done	(Circle)	YES	NO

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/09/07 Report #: R7800379 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Q7655

Received: 2023/08/31, 15:23

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/09/05	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/09/01	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/09/02	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/09/02	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/09/01	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/09/05	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/09/02	2023/09/02	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/09/05	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/09/01	2023/09/06	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/09/01	2023/09/02	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/09/07 Report #: R7800379 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Q7655

Received: 2023/08/31, 15:23

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Bureau Veritas 07 Sep 2023 13:21:04

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		WWD090			WWD091			WWD092		
C. Bata		2023/08/30			2023/08/30			2023/08/30		
Sampling Date		11:00			11:15			11:30		
COC Number		759426			759426			759426		
	UNITS	S105	RDL	QC Batch	\$115	RDL	QC Batch	S205	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	ND	0.050	8892401	ND	0.050	8892401	ND	0.050	8892401
Colour	TCU	17	2	8892018				16	2	8892018
Conductivity	umho/cm	1200	1.0	8894574				1200	1.0	8894574
Total Kjeldahl Nitrogen (TKN)	mg/L	0.56	0.10	8892612	0.51	0.10	8892612	0.48	0.10	8892612
Dissolved Organic Carbon	mg/L	8.3	0.40	8891795				8.1	0.40	8891795
Orthophosphate (P)	mg/L	ND	0.004	8893161	0.005	0.004	8893161	0.013	0.004	8893161
рН	рН	8.85		8894569				8.31		8894569
Total Phosphorus	mg/L	0.013	0.004	8893487	0.011	0.004	8893487	0.017	0.004	8893487
Dissolved Chloride (Cl-)	mg/L	330	5.0	8893169				330	5.0	8893169
Nitrite (N)	mg/L	ND	0.010	8892306	ND	0.010	8892306	ND	0.010	8892306
Nitrate (N)	mg/L	ND	0.10	8892306	ND	0.10	8892306	ND	0.10	8892306
Nitrate + Nitrite (N)	mg/L	ND	0.10	8892306	ND	0.10	8892306	ND	0.10	8892306
RDL = Reportable Detection Lir	nit									
QC Batch = Quality Control Bat	ch									

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix Spike		SPIKED	BLANK	Method B	lank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8891795	Dissolved Organic Carbon	2023/09/02	NC	80 - 120	97	80 - 120	ND, RDL=0.40	mg/L	3.7	20		
8892018	Colour	2023/09/01			100	80 - 120	ND,RDL=2	TCU	NC	25		
8892306	Nitrate (N)	2023/09/05	NC	80 - 120	97	80 - 120	ND, RDL=0.10	mg/L	2.9	20		
8892306	Nitrite (N)	2023/09/05	107	80 - 120	104	80 - 120	ND, RDL=0.010	mg/L	1.4	20		
8892401	Total Ammonia-N	2023/09/01	101	75 - 125	102	80 - 120	ND, RDL=0.050	mg/L	0.86	20		
8892612	Total Kjeldahl Nitrogen (TKN)	2023/09/07	110	80 - 120	103	80 - 120	ND, RDL=0.10	mg/L	5.2	20	101	80 - 120
8893161	Orthophosphate (P)	2023/09/05	83	80 - 120	96	80 - 120	ND, RDL=0.004	mg/L	14	20		
8893169	Dissolved Chloride (Cl-)	2023/09/05	NC	80 - 120	99	80 - 120	ND, RDL=1.0	mg/L	5.2	20		
8893487	Total Phosphorus	2023/09/02	98	80 - 120	98	80 - 120	ND, RDL=0.004	mg/L	15	20	100	80 - 120
8894569	рН	2023/09/02			101	98 - 103			1.7	N/A		
8894574	Conductivity	2023/09/02			101	85 - 115	ND, RDL=1.0	umho/c m	0.70	10		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Custody Tracking Form

есос Number T75942b

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

	Relinquished By				Received By		
- Buold	The state	Date	20231-830	A	11	Date	2023/08/3
Calhra Parhizgari	2 Lapor	Partine (24 HR) 13/36		ACAM	Han	Time (24 HR)	1523
- Rover	Sign Sig=	Date	vevg/wwi/aa	2 day		Date	YYYYMHYDD
ALL REAL		Time (24 HR)	100.566	PHIL.	Sign	Time (24 HR)	HER KAKA
int.		Date	1977/Intel/DC			Date	W77/MM200
Bont		Time (24 HR)	UPD: ANN	Prior	Sign	Time (24 HR)	HEMA

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

名氏者#P\$\$\$\$15.15%。\$2.25%。\$2.86%		Triage Information		
Sampled By (Print)	# of Coolers/Pkgs	Rush	Immediate Test	Food Residue
Zuhra Parhizgari	1	Micro		Food Chemistry

		Custo	dy Seal	Cooling Media	Temperature °C		
Received At	Lab Comments:	Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	3
	21 4 - 22 15:23	N	N	Y	5	9	5
Labeled By	31-Aug-23 15.25	11.61					
	Grace (Hongmei) Zhao						0
Verified By	C307655	Drinking Water	Metals Preservatio	on Check Done (Circl	e) YES	NO	

COR FCD-00340 /5 PAGE 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/10/18 Report #: R7867157 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3U0767

Received: 2023/09/28, 14:45

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/10/03	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/10/02	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/10/03	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/09/29	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/10/04	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/10/03	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (2)	2	N/A	2023/09/30	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/09/29	2023/10/03	CAM SOP-00413	SM 4500H+ B m
рН	1	2023/09/30	2023/09/30	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	2	N/A	2023/10/02	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/10/03	2023/10/04	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/10/03	2023/10/03	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/10/18 Report #: R7867157 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3U0767

Received: 2023/09/28, 14:45

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Heba Gamal Heba gama Project Manager 18 Oct 2023 19:01:07

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XDD302	XDD303			XDD304		
Sampling Date		2023/09/27 10:15	2023/09/27 10:45			2023/09/27 10:30		
COC Number		774683	774683			774683		
	UNITS	S105	S205	RDL	QC Batch	\$115	RDL	QC Batch
Inorganics								
Total Ammonia-N	mg/L	ND	ND	0.050	8958076	ND	0.050	8958076
Colour	TCU	9	11	2	8951202			
Conductivity	umho/cm	1200	1200	1.0	8950554			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.60	0.67	0.10	8957011	0.70	0.10	8957011
Dissolved Organic Carbon	mg/L	8.8	9.1	0.40	8950543			
Orthophosphate (P)	mg/L	0.010	ND	0.004	8953168			
рН	рН	8.22	7.92		8950557	8.12		8952612
Total Phosphorus	mg/L	0.036	0.055	0.004	8957086	0.044	0.004	8957086
Dissolved Chloride (Cl-)	mg/L	310	300	3.0	8950575			
Nitrite (N)	mg/L	ND	ND	0.010	8950395	ND	0.010	8952180
Nitrate (N)	mg/L	ND	ND	0.10	8950395	ND	0.10	8952180
Nitrate + Nitrite (N)	mg/L	ND	ND	0.10	8950395	ND	0.10	8952180
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit ch							

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 18.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix Spike		SPIKED	BLANK	Method E	lank	RPD		QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8950395	Nitrate (N)	2023/09/30	102	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8950395	Nitrite (N)	2023/09/30	110	80 - 120	109	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8950543	Dissolved Organic Carbon	2023/09/29	92	80 - 120	95	80 - 120	ND, RDL=0.40	mg/L	6.9	20		
8950554	Conductivity	2023/10/02			100	85 - 115	ND, RDL=1.0	umho/c m	0.40	10		
8950557	рН	2023/10/02			102	98 - 103			0.48	N/A		
8950575	Dissolved Chloride (Cl-)	2023/10/03	96	80 - 120	96	80 - 120	ND, RDL=1.0	mg/L	NC	20		
8951202	Colour	2023/10/02			100	80 - 120	ND,RDL=2	TCU	3.7	25		
8952180	Nitrate (N)	2023/10/03	92	80 - 120	93	80 - 120	ND, RDL=0.10	mg/L	1.9	20		
8952180	Nitrite (N)	2023/10/03	108	80 - 120	109	80 - 120	ND, RDL=0.010	mg/L	NC	20		
8952612	рН	2023/09/30			102	98 - 103			0.081	N/A		
8953168	Orthophosphate (P)	2023/10/02	71 (1)	80 - 120	94	80 - 120	ND, RDL=0.004	mg/L	NC	20		
8957011	Total Kjeldahl Nitrogen (TKN)	2023/10/04	91	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC (2)	20	99	N/A
8957086	Total Phosphorus	2023/10/03	100	80 - 120	101	80 - 120	ND, RDL=0.004	mg/L	12	20	109	80 - 120
8958076	Total Ammonia-N	2023/10/04	100	75 - 125	100	80 - 120	ND, RDL=0.050	mg/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Phone (905)686-0041 Fax (905)686-0664 York Region LABORATORY ANALYSIS REPORT Work Order #: 112349 Work ID: C3U0767 **Description:** C3U0767 Report To: Grace Zhao Client: **Bureau Veritas Laboratories** Bureau Veritas Canada **Profile:** Non-regulated Water Sampling 6740 Campobello Rd Sampled By: Zahra Parhizgari Sample Count: 2 Canada Authorized by: Jennifer Koene-Fenton, Laboratory Superintendent

Workorder Summary

Workorder Comments

Cyanobacterial specimens reported only as per client request.

Analysis Results Comments

11234901 (1) - Specimen A

Glaucospira - Short spiral filaments, less than 3um in width. Due to the small size of the filament cell enumeration could not be performed. A total of 170 filaments per ml were calculated to be present in the samples. This total has not been included in the final total for cell per ml.

11234901 (1) - Specimen B

Cylindrospermopsis

11234901 (1) - Specimen C

Woronichinia

11234901 (1) - Specimen D

Limnococcus

11234901 (1) - Total Cells

A 10 x dilution was required to enumerate. The value reported has been adjusted accordingly and is an estimated value.

11234902 (2) - Specimen A

Glaucospira - Short spiral filaments, less than 3um in width. Due to the small size of the filament enumeration could not be performed. A total of 90 filaments per ml were calculated to be present in the sample. This total has not been included in the final total for cell per ml.

11234902 (2) - Specimen B

Cylindrospermopsis

11234902 (2) - Specimen C

Woronichinia

11234902 (2) - Specimen D

Limnococcus

11234902 (2) - Total Cells

A 10 x dilution was required to enumerate. The value reported has been adjusted accordingly and is an estimated value.

Report Date: 10/18/2023 5:04:18 PM

Report ID: 112349-5103671

Page 1 of 3

MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside Leaend: limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3

Mississauga, ON L5N 2L8

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

York-Durham Regional Environmental Laboratory

901 McKay Road Pickering, ON L1W 3A3 Phone (905)686-0041 Fax (905)686-0664

LABORATORY ANALYSIS REPORT

Work Order #: 112349

Work ID:

C3U0767

Analytical Results

Lab ID:	11234901	Sample ID:	1	Criteria:	N/A			Date	Received:	10/3/2023	
Matrix:	Water	Location:	S105					Date	Conected:	9/21/2023	
Type:	Surface Water	Description:									
Parameter		Results	Units	MDL	RDL	DF	Limit	Prepared	Analyzed	С	
PHYTOPLA	ANKTON (Cells/m	L) (RELM-14)									
Aphanocapsa	a	32000	cells/mL		10	10		10/03/2023	10/10/2023		
Chroococcus		1000	cells/mL		10	10		10/03/2023	10/10/2023		
Coelosphaeri	um	7200	cells/mL		10	10		10/03/2023	10/10/2023		
Merismopedia	a	1500	cells/mL		10	10		10/03/2023	10/10/2023		
Microcystis		9000	cells/mL		10	10		10/03/2023	10/10/2023		
Specimen A		See comment	cells/mL		10	10		10/03/2023	10/10/2023	*	
Specimen B		1300	cells/mL		10	10		10/03/2023	10/10/2023	*	
Specimen C		4700	cells/mL		10	10		10/03/2023	10/10/2023	*	
Specimen D		9900	cells/mL		10	10		10/03/2023	10/10/2023	*	
Total Cells		67000	cells/mL		10	10		10/03/2023	10/10/2023	*	
		O a marcha I Da	0	Ouitouiou	N1/A			Data	Descharde	40/0/0000	
Lab ID:	11234902	Sample ID:	2	Criteria:	N/A			Date	Received:	10/3/2023	
Lab ID: Matrix: Type:	11234902 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A			Date Date	Received: Collected:	10/3/2023 9/27/2023	
Lab ID: Matrix: Type:	11234902 Water Surface Water	Sample ID: Location: Description:	2 S205	Criteria:	N/A	55	Linett	Date Date	Received: Collected:	10/3/2023 9/27/2023	
Lab ID: Matrix: Type: Parameter	11234902 Water Surface Water	Sample ID: Location: Description: Results	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA	11234902 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14)	2 S205 Units	Criteria: MDL	N/A RDL	DF	Limit	Date Date Prepared	Received: Collected: Analyzed	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa	11234902 Water Surface Water ANKTON (Cells/m	Sample ID: Location: Description: Results L) (RELM-14) 16000	2 S205 Units cells/mL	Criteria: MDL	N/A RDL	DF	Limit	Date Date	Received: Collected: Analyzed	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus	11234902 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 16000 340	2 S205 Units cells/mL cells/mL	Criteria: MDL	N/A RDL 10	DF 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri	11234902 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 16000 340 430	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100	DF 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia	11234902 Water Surface Water	Sample ID: Location: Description: (Results L) (RELM-14) 16000 340 430 1500	2 S205 Units cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100	DF 10 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia Microcystis	11234902 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 16000 340 430 430 5800	2 S205 Units cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100	DF 10 10 10 10 10	Limit	Date Date Date Date 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023	Received: Collected: Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia Microcystis Specimen A	11234902 Water Surface Water	Sample ID: Location: Description: (Results L) (RELM-14) 16000 340 430 430 5800 See comment	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100	DF 10 10 10 10 10 10 10	Limit	Date Date Date	Received: Collected: Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia Microcystis Specimen A Specimen B	11234902 Water Surface Water	Sample ID: Location: Description: Results L) (RELM-14) 16000 340 340 340 5800 5800 See comment 120	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100 100	DF 10 10 10 10 10 10 10 10	Limit	Date Date Date Date Date Date Date Date	Received: Collected: Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia Microcystis Specimen A Specimen B Specimen C	11234902 Water Surface Water	Sample ID: Location: Description: (RELM-14) 16000 340 340 340 5800 See comment 120 650	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100 100 100 10	DF 10 10 10 10 10 10 10 10 10 10 10 10 10	Limit	Date Date Date Date 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023	Received: Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C	
Lab ID: Matrix: Type: Parameter PHYTOPLA Aphanocapsa Chroococcus Coelosphaeri Merismopedia Microcystis Specimen A Specimen B Specimen C Specimen D	11234902 Water Surface Water	Sample ID: Location: Description: (Results (RELM-14) 16000 340 340 340 340 340 340 340 340 340	2 S205 Units cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL	Criteria: MDL	N/A RDL 100 100 100 100 100 100 100 10	DF 10 10 10 10 10 10 10 10 10 10	Limit	Date Date Date Date Prepared 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023 10/03/2023	Received: Analyzed Analyzed 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023 10/10/2023	10/3/2023 9/27/2023 C C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Report Date: 10/18/2023 5:04:18 PM

Report ID: 112349-5103671

Page 2 of 3

The results pertain to the items tested and apply to the sample as received. This report shall not be reproduced, except in full, without the written consent of York-Durham Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

Legend: MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

York Region	York-Durh 1 LAI	am Regio S Pick Phone (905)6 BORATOI	onal En 001 McKay ering, ON 886-0041 I RY ANA	vironmo Road L1W 3A3 Fax (905)6	ental 886-0664 REPC	Laboratory DRT			DUR	RHA			
Work Order #:	112349			Wo	ork ID:			C3U	1076	37			
York Region Y 901 McKay Road, Pickering ON L1W Fax: 905-686-0864 Email: rel@durhar	York-Durham Regional Environmental Laboratory 3A3 Toll Free: 1-877-551-8877 Local: 905-686-0041 n.ca Web: www.durham.ca	C3U0767 WORK-ID Non-regulated Wastewater,Biosol Chain of Custody For								Pageof Vater, Diid,Soil Form			
Client Information Company Name: Bureau Veri	las Canada	Invoice To (leav	e blank if same a	s Client)	Re	port to (email address)	i oi oust	buyi					
Facility Name:						1) hongmei.zhao@bureauveritas.com							
Facility Address: 6740 Campo	bello Bd	Quote #			2)								
Facility Contact: Grace Zhao		PO #:			3)								
Email: hongmei.zhao@bur	eauveritas.com Tel:				(4)								
Project Information (if applic	able)				[9)								
Description: C3U0767		Standard Turnarou	nd Time (TAT) is	10 business days	L]*RUSH	*Rush TAT requires lab a	pproval in ad	vance. S	Surchar	ge will a	pply.		
Lab ID				Colle	ction	1	Co	Intainer		Ch	lorine	Apply	
(lab use only) Field ID	Location/Description/Comment	(s) Matr	ix Type	mm-dd-yy	нн:мм	Test Group(s)	Type	Sent	Rec'd	Free	Total	Criteria	
01	S105	w	Surface	0.27.22	1045				1		Total		
\mathcal{O}_{-}			Gunade	5-21-23	1015	Algaecells(Cyanobacteria)	preserved						
	5205		Surface	9-27-23	1045	Algaecells(Cyanobacteria)	preserved						
					:								
					:								
					:		<i>x</i>						
					:								
Sampled By:	Zahra Parhizgari	Т	el:		(1) Se	elect One Applicable Criteri Sanitary Sewer Use By-law	a Provi	de Munic	ipality /	/ City / D	escriptio	'n	
Relinquished By (Print/Sign):	Grace Zhao	Date/Tim	ie:2	023/09/29		Storm Sewer Use By-law New Water Main Other							
Delivery Method: Cou			1000	FEIR STATION AND ADDRESS									
Sorted by:	Labelled by: WO #:	112340	2 1	12349	Da By ts:	te/Time:	C)CT 3 2	2023	10:28	3		
REL-COC-NONREG-NOV-2019-REV	/-1												

Report Date: 10/18/2023 5:04:18 PM

Report ID: 112349-5103671

Page 3 of 3

Regional Environmental Laboratory. All supporting analytical information including measurement uncertainty is available upon request. The statement of Conformity is based on simple acceptance, whether the result is within or outside the acceptance limits. The uncertainty is not taken into account in the statement of conformity. The end user is responsible for determining conformity.

MDL = Method Detection Limit; RDL = Reporting Detection Limit; MU = Measurement Uncertainty; < or ND = Less Than or Non-detect; ^ = Result outside Legend: limit; Limit = MAC; DF = Dilution Factor; OG = Operational Guideline; AO = Aesthetic Objective; HC = Health Canada; C = Comment; * = Comment Present

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

of Coolers/Pkgs:

 First Sample:
 \$105

 Last Sample:
 \$115

 Sample Count:
 3

	Relinquished By	Cost Sund			Received By	Vielas -	
ally Rings -	2 patrici	Date	2013/09/27	Biden Kan	Person for	Date	2013 09 29
Lanna rainizgan		Time (24 HR) 13430	Pyreind	10001	Time (24 HR)	14:45	
Print	Sign	Date	YYYY/MM//00	Print	Sign	Date	YYYY/MM//DD
		Time (24 HR) HH:MA	HH:MIN			Time (24 HR)	104.MM
Print	Sign	Date .	MARKING JO	Print,	Sion	Date	YYYY/MM/DD
		Time (24 HR)	HHAD	1		Time (24 HR)	MICANIN

Sampled By (Print)

Received At

Labeled By

Verified By

Zahra parhizgari

Food Chemistry Micro *** LABORATORY USE ONLY *** Temperature °C **Custody Seal** Lab Comments: **Cooling Media** 3 2 1 Present (Y/N) Intact (Y/N) Present (Y/N) 18 18 N N 19 N 28-Sep-23 14:45 Grace (Hongmei) Zhao C3U0767 NO YES Drinking Water Metals Preservation Check Done (Circle) 0 ENV-602 A1V Bu # 209703

Immediate Test

Rush 🗌

COR FCD-00383/4

Food Residue

Page 1 of 1

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/10/26 Report #: R7880703 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3W6306

Received: 2023/10/19, 15:58

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses C	luantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/10/26	CAM SOP-00463	SM 23 4500-Cl E m
Colour	2	N/A	2023/10/23	CAM SOP-00412	SM 23 2120C m
Conductivity	2	N/A	2023/10/21	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/10/21	CAM SOP-00446	SM 23 5310 B m
Total Ammonia-N	3	N/A	2023/10/24	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	3	N/A	2023/10/24	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2023/10/20	2023/10/21	CAM SOP-00413	SM 4500H+ B m
Orthophosphate (low level)	3	N/A	2023/10/24	CAM SOP-00461	SM 23 4500 P G m
Total Kjeldahl Nitrogen in Water	3	2023/10/23	2023/10/24	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/10/23	2023/10/25	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/10/26 Report #: R7880703 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3W6306

Received: 2023/10/19, 15:58

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Bureau Veritas 26 Oct 2023 18:17:45

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XIP091			XIP092			XIP093			
Sampling Date		2023/10/18 10:30			2023/10/18 11:00			2023/10/18 10:45			
COC Number		786142			786142			786142			
	UNITS	S105	RDL	QC Batch	S205	RDL	QC Batch	\$115	RDL	QC Batch	
norganics											
Total Ammonia-N	mg/L	ND	0.050	9000441	ND	0.050	9000441	ND	0.050	9000441	
Colour	TCU	9	2	8998012	10	2	8998012				
Conductivity	umho/cm	1300	1.0	8996972	1300	1.0	8996972				
Total Kjeldahl Nitrogen (TKN)	mg/L	0.68	0.10	9000821	0.63	0.10	9000821	0.70	0.10	9000821	
Dissolved Organic Carbon	mg/L	8.2	0.40	8995735	8.5	0.40	8995735				
Orthophosphate (P)	mg/L	ND	0.004	8997029	ND	0.004	8997029	ND	0.004	8997029	
рН	рН	8.01		8996973	8.06		8996973				
Total Phosphorus	mg/L	0.019	0.004	9000806	0.022	0.004	9000803	0.022	0.004	9000806	
Dissolved Chloride (Cl-)	mg/L	170	1.0	8997025	330	5.0	8997025				
Nitrite (N)	mg/L	ND	0.010	8996935	ND	0.010	8996935	ND	0.010	8996937	
Nitrate (N)	mg/L	ND	0.10	8996935	ND	0.10	8996935	ND	0.10	8996937	
Nitrate + Nitrite (N)	mg/L	ND	0.10	8996935	ND	0.10	8996935	ND	0.10	8996937	
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit tch	<u> </u>									

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

				Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
8995735	Dissolved Organic Carbon	2023/10/21	94	80 - 120	96	80 - 120	ND, RDL=0.40	mg/L	2.4	20			
8996935	Nitrate (N)	2023/10/24	99	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	NC	20			
8996935	Nitrite (N)	2023/10/24	106	80 - 120	106	80 - 120	ND, RDL=0.010	mg/L	NC	20			
8996937	Nitrate (N)	2023/10/24	98	80 - 120	100	80 - 120	ND, RDL=0.10	mg/L	NC	20			
8996937	Nitrite (N)	2023/10/24	106	80 - 120	107	80 - 120	ND, RDL=0.010	mg/L	NC	20			
8996972	Conductivity	2023/10/21			101	85 - 115	ND, RDL=1.0	umho/c m	0.14	10			
8996973	рН	2023/10/21			101	98 - 103			0.79	N/A			
8997025	Dissolved Chloride (Cl-)	2023/10/26	NC	80 - 120	100	80 - 120	ND, RDL=1.0	mg/L	5.5	20			
8997029	Orthophosphate (P)	2023/10/24	88	80 - 120	95	80 - 120	ND, RDL=0.004	mg/L	NC	20			
8998012	Colour	2023/10/23			102	80 - 120	ND,RDL=2	TCU	NC	25			
9000441	Total Ammonia-N	2023/10/24	99	75 - 125	102	80 - 120	ND, RDL=0.050	mg/L	2.8	20			
9000803	Total Phosphorus	2023/10/25	99	80 - 120	99	80 - 120	ND, RDL=0.004	mg/L	NC	20	94	80 - 120	
9000806	Total Phosphorus	2023/10/25	100	80 - 120	102	80 - 120	ND, RDL=0.004	mg/L	16	20	98	80 - 120	
9000821	Total Kjeldahl Nitrogen (TKN)	2023/10/24	107	80 - 120	103	80 - 120	ND, RDL=0.10	mg/L	7.6	20	103	80 - 120	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

REAU RITAS		C	Custody Trac	cking Form			T786142	
lease use this form for cu lease ensure your form ha umber links your electror	stody tracking when sub as a barcode or a Bureau lic submission to your sa	omitting the work u Veritas eCOC cor amples. This form	instructions via eCOC nfirmation number in should be placed in t	C (electronic Chain of Custody the top right hand side. This the cooler with your samples.). Firs Las Sar	t Sample: t Sample: nple Count:	S105 S115 3	
	Relinguished By				Recei	ved By		
ahra farhizgari	2 phrmi	Date Time (24 HR)	2023/10/18	Parcept Ken	Freeze	Contraction Date	4 HR)	2023 10 14
Wille:	ធ្លែងអ	Date Time (24 HR)	HINDOWN	18mm	-Sign	Date Time (2	4 HR)	envedattarine Hirshifel
		Date Time (24 HR)	1977936459797 11-566	Renar	Sign	Date Time (2	24 HR)	ergehendun disktist
s otherwise agreed to, sul	omissions and use of serv	vices are governed	d by Bureau Veritas' s	tandard terms and conditions	which can be fou	nd at www.bvna.co	om.	
pled By (Print) Zathra Parhizg	ań		ers/Pkgs:	Rush 🗌 Micro 🗌	Immediate 7	Fest 🗌	Food Food C	d Residue 🗌 Chemistry 🗌
pled By (Print) Zahra Parhizg	ań	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY ***	Immediate ⁻	Fest	Food Food C	d Residue 🗌 Chemistry 🗌
pled By (Print) Zahra Parhizg Received At	ari Lab Con	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY *** Cust	Immediate	Fest	Food Food C Temp	d Residue
apled By (Print) Zahra Parhizg Received At Labeled By	Lab Con	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY *** Cust Present (Y/N	Immediate	Cooling Media Present (Y/N)	Food Food C Temp 1	d Residue
pled By (Print) Zahra Parhing Received At Labeled By	Lab Con	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY *** Cust Present (Y/N KV	Immediate T ody Seal Intact (Y/N)	Cooling Media Present (Y/N)	Food Food C Temp 1 2	d Residue Chemistry perature °C 2 3 2 6
Appled By (Print) Zahra Parhizg Received At Labeled By Verified By	Lab Cor	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY *** Cust Present (Y/N // Drinking Wa	Immediate	Cooling Media Present (Y/N) A Yas Vegation Check Done	Food Food C Temp 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	d Residue
Appled By (Print) Zahra Parhizg Received At Labeled By Verified By 19-C Grace (Ho II III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	عبر Lab Cor Dct-23 15:58 ngmei) Zhao	# of Cool	ers/Pkgs:	Rush Micro RY USE ONLY *** Cust Present (Y/N M Drinking Wa	Immediate	Cooling Media Present (Y/N) Present (Y/N) Present (Y/N) Present (Y/N)	Food Food C Temp 1 2 (Circle) B~ H 7	d Residue

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/11/30 Report #: R7935669 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3AJ293

Received: 2023/11/23, 18:15

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2	N/A	2023/11/30	CAM SOP-00463	SM 24 4500-Cl E m
Colour	2	N/A	2023/11/29	CAM SOP-00412	SM 24 2120C m
Conductivity	2	N/A	2023/11/28	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/11/24	CAM SOP-00446	SM 24 5310 B m
Total Ammonia-N	3	N/A	2023/11/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	2	N/A	2023/11/27	CAM SOP-00440	SM 24 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/11/28	CAM SOP-00440	SM 24 4500-NO3I/NO2B
рН	2	2023/11/24	2023/11/24	CAM SOP-00413	SM 24th - 4500H+ B
Orthophosphate (low level)	3	N/A	2023/11/24	CAM SOP-00461	SM 24 4500 P-E
Total Kjeldahl Nitrogen in Water	3	2023/11/24	2023/11/27	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	3	2023/11/24	2023/11/25	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 6

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Zahra Parhizgari

City of Markham Environmental Services Depart 8100 Warden Ave Markham, ON Canada L6G1B4

> Report Date: 2023/11/30 Report #: R7935669 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3AJ293

Received: 2023/11/23, 18:15

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Bureau Veritas 30 Nov 2023 17:26:57

Please direct all questions regarding this Certificate of Analysis to: Grace (Hongmei) Zhao, Project Manager Email: hongmei.zhao@bureauveritas.com Phone# (905)817-5734

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XRS952			XRS953			XRS954		
Sampling Data		2023/11/22			2023/11/22			2023/11/22		
Sampling Date		10:00			10:45			10:15		
COC Number		805813			805813			805813		
	UNITS	S105	RDL	QC Batch	S205	RDL	QC Batch	S115	RDL	QC Batch
Inorganics										
Total Ammonia-N	mg/L	0.22	0.050	9070680	0.22	0.050	9070680	0.22	0.050	9070680
Colour	TCU	9	2	9071074	12	2	9071074			
Conductivity	umho/cm	1300	1.0	9072119	1300	1.0	9072119			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.84	0.10	9070673	0.82	0.10	9070673	0.84	0.10	9070673
Dissolved Organic Carbon	mg/L	8.7	0.40	9069638	8.9	0.40	9069638			
Orthophosphate (P)	mg/L	ND	0.004	9070384	ND	0.004	9070384	0.004	0.004	9070384
рН	рН	8.10		9070978	7.94		9070978			
Total Phosphorus	mg/L	0.012	0.004	9070293	0.015	0.004	9070293	0.012	0.004	9070293
Dissolved Chloride (Cl-)	mg/L	290	5.0	9071053	280	3.0	9071053			
Nitrite (N)	mg/L	ND	0.010	9071990	ND	0.010	9071923	ND	0.010	9071923
Nitrate (N)	mg/L	ND	0.10	9071990	ND	0.10	9071923	ND	0.10	9071923
Nitrate + Nitrite (N)	mg/L	ND	0.10	9071990	ND	0.10	9071923	ND	0.10	9071923
RDL = Reportable Detection Lir	nit									

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.3°C

Results relate only to the items tested.

Page 4 of 6 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9069638	Dissolved Organic Carbon	2023/11/24	93	80 - 120	96	80 - 120	ND, RDL=0.40	mg/L	3.9	20		
9070293	Total Phosphorus	2023/11/25	98	80 - 120	102	80 - 120	ND, RDL=0.004	mg/L	17	20	101	80 - 120
9070384	Orthophosphate (P)	2023/11/24	93	80 - 120	94	80 - 120	ND, RDL=0.004	mg/L	NC	20		
9070673	Total Kjeldahl Nitrogen (TKN)	2023/11/27	106	80 - 120	97	80 - 120	ND, RDL=0.10	mg/L	NC	20	98	80 - 120
9070680	Total Ammonia-N	2023/11/27	100	75 - 125	101	80 - 120	ND, RDL=0.050	mg/L	NC	20		
9070978	рН	2023/11/24			102	98 - 103			0.28	N/A		
9071053	Dissolved Chloride (Cl-)	2023/11/30	80	80 - 120	100	80 - 120	ND, RDL=1.0	mg/L	0.69	20		
9071074	Colour	2023/11/29			101	80 - 120	ND,RDL=2	TCU	2.7	25		
9071923	Nitrate (N)	2023/11/27	96	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
9071923	Nitrite (N)	2023/11/27	106	80 - 120	107	80 - 120	ND, RDL=0.010	mg/L				
9071990	Nitrate (N)	2023/11/28	89	80 - 120	91	80 - 120	ND, RDL=0.10	mg/L	NC	20		
9071990	Nitrite (N)	2023/11/28	105	80 - 120	105	80 - 120	ND, RDL=0.010	mg/L	NC	20		
9072119	Conductivity	2023/11/28			101	85 - 115	ND, RDL=1.0	umho/c m	0.40	10		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

City of Markham Site Location: SWAN LAKE Your P.O. #: PB22006 Sampler Initials: ZP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eCOC (electronic Chain of Custody). Please ensure your form has a barcode or a Bureau Veritas eCOC confirmation number in the top right hand side. This number links your electronic submission to your samples. This form should be placed in the cooler with your samples.

First Sample:	S105
Last Sample:	S115
Sample Count:	3

	Relinquished By				Received By		
Zha Daliz	2 0 ASON .	Date	2023/11/22	Allina	Ala	Date	2023/11/23
called Parhicgan	Coponium	Time (24 HR)	13:30	AUrm	9)000	Time (24 HR)	1815
Print	Sign	Date	YYYYY/Missian	Print	5/(/#	Date	TITE/MA/pp
		Time (24 HR)	2116346427			Time (24 HR)	(11) http:
Print	Mgr)	Date	TP/10/WIA6202	Print	5lpn	Date	10799/6869/20
		Time (24 HR)	Hiskith			Time (24 HR)	ANGRAN -

Unless otherwise agreed to, submissions and use of services are governed by Bureau Veritas' standard terms and conditions which can be found at www.bvna.com.

		Triage Information		
Sampled By (Print) Zahra Parhizgari	# of Coolers/Pkgs:	Rush 🗌 Micro 🗌	Immediate Test 🗌	Food Residue 🗌 Food Chemistry 🗌

	*** LABORATORY L	JSE ONLY ***				S. Levels	
Received At Lab Comments:		Custod	Cooling Media	Temperature °C			
		Present (Y/N)	Intact (Y/N)	Present (Y/N)	1	2	
Labeled By		ΥΥ	Ý	Y	4	6	6
Verified By				- C			
	23-Nov-23 18:15	Drinking Water	r Metals Preser	vation Check Done	e (Circle)	YES	r
	Grace (Hongmei) Zhao						
	C3AJ293						
	TDE				CO	R FCD-003	83/4
						Page 1 d	of 1

Swan Lake Water Quality Improvement & Parks Refresh Program and Parks Improvements Projects

Community Meeting on Program Update

Environmental Services & Operations Departments

March 25, 2024

Background

Lake Formation and Land Development

- Gravel pit in the 1960s and 1970s; construction waste dump in the early 1980s
- Lake formed when pumping for the gravel pit ceased operations
- Area draining to the Lake started as farmlands and rapidly changed to urban residential
- Drainage area fully developed.

Water Flow

- Water flows into the Lake from: .
 - **Direct Precipitation**
 - Urban development ponds and oil _ and grit separators/ sewer system
 - Shoreline runoff
 - Water leaves the Lake through: •
 - Evaporation
 - Lake outfall to sewer and then to Mt. Joy Creek
- Groundwater exchange complex and uncertain

Natural Features

- Diverse community of terrestrial species
- Mute and trumpeter swans
- Small mammals and several bird species
- Snapping turtles
- Resident and migratory Geese
- Limited fish community
- Invasive species
- Designated as 'Other Greenway System Lands including naturalized stormwater management facilities'

Photo of birds and turtles courtesy of Donald and Cindy Fowler (through FOSLP)

Community Interest

- Original objective set out by the developers in 1993
- A community feature within the Swan Lake Park. The Park is widely used by residents and visitors.
- Many avid bird-watchers and photographers.
- Survey conducted by the Friends of Swan Lake in 2020

to transform the inactive gravel pit into a 'diverse natural habitat for aquatic and terrestrial wildlife... that incorporates passive use opportunities surrounding the Lake".

residents "support a long-term plan that involves investment in sustainable solutions and restoration of the aquatic and land-based habitat".

Issues

- Phosphorus from sediment and geese resulting in algae growth
- Chloride from winter maintenance activities
- Limited flushing of contaminants in Lake

Opportunities

- Swan Lake and park are well used amenities with strong community support for sustainable solutions
- Existing stormwater management
 infrastructure to treat most of runoff

A REAL PROPERTY AND A REAL

Water Quality Improvement P

Timeline 2011-2019

- 2011: Lake at Hyper-eutrophic level/ Monitoring started (external lake quality advisor hired)
- 2013: Phoslock application improved water quality
- 2014: Geese control initiated
- 2019: Water quality strategy study

Freshwater

PO³⁻ Fe²⁺

 $SO_4^{2-}Al^{3+}$ l^{2+} Nutrients

Developing a Long-Term Plan

- Goal Statement
- Targets derived considering local conditions
- Several potential mitigation measures reviewed by lake experts
- TRCA was consulted on respective measures
- Stakeholders' extensive input was considered

To improve the overall health of Swan Lake, which will provide opportunities for no-contact activities for the enjoyment of the community

- Phosphorus: a low eutrophic condition in year 1 after treatment increasing in year 3
- Chloride: remain below acute guideline and close to 2013-2014 values
- Transparency: above 0.8 m

Toronto and Region

Conserval

Friends of

Screening of Ideas

- Nutrient control focuses on governing contaminant (phosphorus)
- Chemical treatment most effective for nutrients from sediment
- Geese management most effective for nutrients from geese
- Mechanical aeration promotes release of nutrients from sediment
- Chemical oxygenation toxic for aquatic life
- Water circulation increases temperature and evaporation; costly and disruptive
- Sediment removal extremely costly and disruptive
- Stormwater re-direction and research into chloride removal technologies considered

Adaptive Plan

- A Long-Term Management Plan was approved by Council in 2021 for the next 25 years
- In three Phases to allow for reviewing and updating the Plan to adapt to Lake conditions
 - Core Measures: All years
 - Complementary Measures: years 6-10 (brought forward)
 - Alternative Measures: years 11-25 (partially brought forward)

Plan Implementation

Monitoring, Inspections and Studies

- Important for understanding issues and planning mitigation measures and adapting the plan based on the results
- Includes chemistry and biology
- Water level logger and staff gauge
- Measurements and samples by City staff
- Analysis by accredited laboratories
- Regular site inspections and observations
- External experts hired for review and updates

Water Treatment

- Most effective way to control release of nutrients from sediment
- Careful treatment planning and monitoring to avoid any adverse effect
- Repeated every three years or as needed based on review of monitoring results
- 2021 treatment very effective in reducing phosphorus and algae levels

Geese Management

- Hazing/chasing
- Geese relocation and egg/nest
 management
- Public education and geese count (see QR code)
- Fenced open spaces to prevent geese from accessing the water
- Low cost alternatives (e.g., strobe lights were tested)

Swan Lake Geese Count Survey QR Code

Fish Management / Aquatic Planting

- Removal of bottom-dwelling fish (to avoid disturbance of sediment)
- Fish management plan and fish stocking pending improved water quality
- Planting of submerged aquatic vegetation initiated as a pilot project in 2023 to improve transparency and promote aquatic habitat improvement

Maintenance

- In November 2021 the East pond inlet was cleared
- In August 2023, the outlet from Swan Club OGS was cleared
- Assumption by the City for the two private ponds underway
- Best practices for winter maintenance followed by the City and the Village

MARKHAM

Stakeholder Engagement

- Annual reporting to Markham Subcommittee in May
- Consultation with TRCA and researchers
- Exchanges with FOSLP and other interested residents
- Swan Lake page on website
- Algae signs warn against contact with water
- Geese signs upgraded with info on geese impact
- An online application for public input into geese count
- Residents informed against releasing goldfish pets and poaching turtles

www.markhamca/swanlake

Plan Accomplishments

- Controlling internal and external sources of nutrients reduced . phosphorus and nitrogen to below targets
- Enhanced oxygen levels •
- Maintenance activities reduced chloride to below targets
- Geese management reduced the number of migratory geese . by half
- Aquatic vegetation planting • initiated to improve clarity and promote healthier habitat

Resident (Jun-Aug)

Migratory (Sep-Nov

Sep. only

Nov. onl

400

200

100

2014

Daily average 300

Looking Ahead

- Continue monitoring of water quality
- Geese and fish management
- Water treatment followed by aquatic planting
- Opportunities to reduce loadings will be sought through Flow Diversion Study
- Chloride treatment research in 2024 as positive results could be a valuable tool
- Continue pond assumption process
- Research by Trent University on Rare Earth Elements

22

Summary of Parks Refresh Program and Parks Improvements Projects (2021 to 2023)

Parks Refresh Program 2 Year Project Complete

1. Pollinator planting in place of rain garden

2. Pollinator Planting

3. Understory plantings

Parks Refresh Program 2 Year Project Complete

nvironmenta

& Water Ouality

mpacts

Help us control the Canada Geese population

owners. The City of Markham

MARKHAM MARKHAM

ignites removal

5. Shoreline improvements

Swan Lake Park Improvement Projects

Swan Lake Park Improvement Projects

Swan Lake Park Improvement Projects

Playground and Rubberized Surfacing replacement

Entrance bed removal and replacement AMICA property trail connection

28

Swan Lake Park Projects 2024

- Limestone pathway grading levelling
- Maintain plantings from previous years
- Maintain goose exclusion fencing until permanent fencing is erected
- Monitor Phragmites for reoccurrence and additional treatment
- Restoration of existing lake level viewing nodes on north shoreline, new viewing nodes are not being considered at this time

Operations has completed the Park Refresh and Shoreline Improvement consultation and will support Environmental Services on water quality improvement as the first priority. In 2024, staff will submit 2025 capital budget request to construct permanent goose exclusion fencing and plantings to further support water quality improvements

References

- <u>www.markham.ca/swanlake</u>
- Update on Swan Lake Water Quality (February, 2013)
- Swan Lake Water Quality Improvement Program (June, 2020)
- Geese Management at Swan Lake: Overview of Options and Path Forward (September, 2020)
- Swan Lake Long-Term Management Plan (November 2021)
- Swan Lake 2021 Water Quality Status and Updates (May 2022)
- Swan Lake 2022 Water Quality Status and Updates (May 2023)

Contact information:

Swan Lake Water quality:

Robert Muir

Manager, Stormwater, Environmental Services

≥: rmuir@markham.ca

🖀: 905.477.7000 x 2357

Swan Lake Park:

City of Markham Contact Center: ⊠: customerservice@markham.ca

BUILDING MARKHAM'S FUTURE TOGETHER 2020 – 2023 Strategic Plan

Questions?

WELCOME

Swan Lake Water Quality Improvement Community Meeting on Program Upclate March 25, 2024

Purpose of Swan Lake Water Quality Improvement

Purpose of Public Information Meeting

- Output is a set of the water quality improvement program
- Share achievements of the program since it started
- Inform the public about upcoming activities in 2024
- Discuss ways to get involved in improving water quality and habitat health
- Answer any questions the public may have

To improve the overall health of Swan Lake, which will provide opportunities for no-contact activities for the enjoyment of the community

Swan Lake History

Gravel pit in the 1960s and 1970s Construction waste dump in the early 1980s

Area draining to the Lake started as farmlands and rapidly changed to urban residential

Lake formed when pumping for the gravel pit ceased operations

Drainage area fully developed

Swan Lake Water Flow

Issues

Closed system with limited flushing of contaminants from Lake

Limited aquatic community

Brown Bullhead (Catfish) Common Carp Fathead Minnow

Invasive species Dog-strangling vine **Black Locust** Phragmites (Common reed)

Chloride from winter maintenance activities

Swan Lake and park are well used amenities with strong community support for sustainable solutions

Photo of birds and turtles courtesy of Donald and Cindy Fowler (through FOSLP) From top left: Trumpeter swan, Red-tailed hawk, Domestic duck, Great blue heron Cormorant, Black-crowned night heron, Ruby-crowned kinglet Mute swan, Yellow warbler, Painted turtles

Opportunities

Existing stormwater management infrastructure to treat most of runoff

Diverse community of terrestrial species

CORE MEASURES	
 * Water quality monitoring * Geese management * Fish removal * Maintenance of stormwater facilities * Chemical treatment 	COMPL * Plantin vegetati * Fish M * New te treatmen

• Phase 1: 2021-2025

Evaluate measures

Swan Lake Long-Term Management Plan

* Some complementary measures have been brought forward to Phase 1.

** Some alternative measures have been brought forward to Phase 1.

Water Treatment

- Most effective way to control release of nutrients from sediment
- Careful treatment planning and monitoring to avoid any adverse effect
- Repeated every three years or as needed based on review of monitoring results
- 2021 treatment very effective in reducing phosphorus and algae levels

Fish Management and Aquatic Planting

- Removal of bottom-dwelling fish (to avoid disturbance of sediment)
- Planting of submerged aquatic vegetation initiated as a pilot project in 2023 to improve aquatic habitat

Water Quality Accomplishments

Geese Management

- Hazing /chasing •
- Geese relocation and egg/nest management
- Geese count
- Public education sign •
- Fenced open spaces to prevent • geese from accessing the water
- Low cost alternatives (e.g., strobe lights were tested)

Source Control and Maintenance

- Outlet from Swan Club treatment device was cleared
- Assumption by the City for the two private ponds underway
- Best practices for winter maintenance followed by the City and the Village

MARKHAM of Excellence

own of Markhan

SALT MANAGEMENT 700 PLAN Short-term guideline වි 600 500 Swan Lake Target Range 200 Long-term guideline 0 100

Ongoing and Upcoming Work in 2024-2025

Water Quality Monitoring

- Important for understanding issues and planning mitigation measures
- Chemistry and biology
- Oxygen and temperature
- Water level

Water Treatment

Planning and implementation of the second treatment

- Study feasibility of flow redirection and potential impacts on flooding and chloride level
- Flow monitoring

Geese Management

- Hazing /chasing
- Geese relocation and egg/nest management
- Public education
- Replacing temporary fencing with permanent features

Fish Management Removal of bottomdwelling fish Consultation with OMNRF on fish stocking

Planting of Aquatic Vegetation

Additional planting of submerged aquatic vegetation to improve aquatic habitat

New Technologies for Chloride Treatment

Research by York University on chloride removal using biochar

Decorative image - OMNRF fish stocking using a helicopter

Decorative image – submerged aquatic plants

Pond Assumption Process

Continue engaging with the developers on maintenance and assumption of stormwater ponds

Parks Refresh Program 2 Year Project Complete

GOOSE MANAGEMENT AREA About Canada Geese We are not · I fly in large v-shaped flocks when migrating hungry – pleas Ecan travel more than 1,000 km in one day do not feed us! I nest in the same area where I was born I mate for life, but if my partner dies, I will take another mate Bread hurts my stomach Grass & grains keep me I don't fly for six weeks in the early summer when I am growing new wing feathers (molt) I won't migrate if you feed me Environmental Help us control the Canada Geese Too much gouse poop & Water Quality leads to contamination population and over tertilization. mpacts (suprophication) of water - 50UTCR5 Suburban and urban areas provide ideal conditions required for goose survival – plenty of food and space to roam, lark of natural predators and safe from hunters. · High suffert concentrations from goose poop can Recause of this, we have too many greate in our urban areas including Swan take. lead to blooms of cyanobacteria which forms a iver of sources the lake surface and may produce The population of Canada Grener at Swan Lake has contributed to poor water quality and other negative /mpacts to the environment. The City of Markham has Microcystina which is autic to humana, pets and w/idille apon contactor ingestion a Geese Management Program to help sustainably reduce the number Geese damage the turi through excessive eating, and large numbers compact the soll so nothing else will grow of gease present. Area residents and visitors are encouraged to help the City's efforts by submitting their observations about geest on the lake and its Genue are now "resident" species, meaning they runlonger migrate so these problems can exist year round shorelines to the City's Grese Counting App. MARKHAM MARKHAM Learn more markham.ca/SwanLake A Healthier Commanity

6. Educational outreach

Swan Lake Park- Recommended Shoreline Restoration Plan

How You Can Help

- Do not feed the geese
- Report geese count and other wildlife observations through an online application (scan QR code)

Refrain from releasing goldfish pets and poaching turtles

Follow best management practices for salt management, check the TRCA's Sustainable Salt Management Resources

https://partnersinprojectgreen.com/resources/ sustainable-salt-management-resource-hub/

Black dots/salt showing how much salt should be applied -50mg/m2.

- Annual meeting with \bullet Markham Subcommittee in May
- Swan Lake page contains lacksquarepast reports and presentations:

www.markham.ca/swanlake

Contact information:

Swan Lake Water quality: Robert Muir Manager, Stormwater, Environmental Services ⊠: rmuir@markham.ca **1**: 905.477.7000 x 2357

Swan Lake Park:

David Plant Senior Manager, Parks Horticulture and Forestry, Operations ⊠ : dplant@markham.ca

*****: 905.477.7000 x 4893

Looking for More Information

